

Corrective Action Process Report / Plan Cover Sheet

CHAPTER 245 STORAGE TANK ACT

- Site Characterization Report Section 245.310(b)
- ☑ Site Characterization Report Site-Specific Standard
- Site Characterization Report Statewide Health or Background Standard
- **Site Characterization Report PLUS Statewide Health Standard**
- **Remedial Action Plan Statewide Health or Background Standard**
- **Remedial Action Plan Site-Specific Standard**
- **Remedial Action Progress Report**
- Remedial Action Completion Report Statewide Health or Background Standard
- **Remedial Action Completion Report Site-Specific Standard**
- □ Post-Remediation Care Plan Report
- **Environmental Covenant**

(check all that apply to the enclosed submission)

SUPPLEMENTAL SITE CHARACTERIZATION REPORT FOR TANK 009 HARLEY-DAVIDSON MOTOR COMPANY OPERATIONS, INC. FORMER YORK NAVAL ORDNANCE PLANT 1425 EDEN ROAD YORK, YORK COUNTY, PENNSYLVANIA

PADEP Facility ID No. 67-00823

SAIC Project 2603100044-3000-100

Prepared for:

Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road York, PA 17402

December 2012

Supplemental Site Characterization Report for Tank 009 Harley-Davidson Motor Company Operations, Inc. Former York Naval Ordnance Plant 1425 Eden Road York, York County, Pennsylvania

PADEP Facility ID No. 67-00823

SAIC Project 2603100044-3000-100

Prepared for:

Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road York, PA 17402

Prepared by:

SAIC Energy, Environment & Infrastructure, LLC 6310 Allentown Boulevard Harrisburg, PA 17112 (717) 901-8100

December 2012

Respectfully submitted:

Matthew J. Logan Geological Scientist

Kent V. Littlefield, P.G. Senior Hydrogeologist – Program Manager

TABLE OF CONTENTS

			Page
1.0	INT	RODUCTION	1
	1.1	Purpose	1
	1.1	Report Organization	
2.0			
2.0	SILE	CHARACTERIZATION	
	2.1	Introduction	
	2.2	Soil Borings	
		2.2.1 Sampling Procedures	
		2.2.2 Environmental Assessment Results	
	2.3	Monitoring Wells	
		2.3.1 Well Drilling and Construction Procedures	
		2.3.2 Well Surveying	
		2.3.3 Well Gauging	
		2.3.4 Groundwater Sampling	
	2.4	2.3.5 Investigation-Derived Waste Management	
	2.4 2.5	Subsurface Stratigraphy	
	2.3	Hydrologic Conditions2.5.1Monitoring Wells and Manual Gauging	
		2.5.1 Monitoring wens and Manual Gauging	
	2.6	Hydraulic Conductivity Testing	
	2.0	2.6.1 Procedure	
		2.6.2 Results	
		2.6.2 Results 2.6.3 Groundwater Fate-and-Transport Modeling	
		2.6.3.1 Objective and Method	
		2.6.3.2 Fate-and-Transport Model Input Data	
		2.6.3.3 Plume Stabilization	
		2.6.3.4 Model Sensitivity	
		2.6.3.5 Model Calibration	
		2.6.3.6 Limitations	
		2.6.3.7 Model Results	
	2.7	Vapor Intrusion	
		2.7.1 Objective and Method	
		2.7.2 Soil Gas Sample Point Installations	
3.0	DIS	CUSSION OF POTENTIAL EXPOSURE	27
	3.1 3.2	Groundwater	
	3.2 3.3	Soil	
	5.5 3.4	Indoor Air	
	5.4 3.5	Ecological Receptors	
10			
4.0		TIFICATION OF REMEDIATION STANDARDS	
	4.1	Soil	
	4.2	Groundwater	30

5.0	CON	CLUSIONS AND RECOMMENDATIONS	31
	5.1	Conclusions	31
	5.2	Recommendations	32
6.0	REFE	ERENCES	34

LIST OF FIGURES

Figure 1, Site Location Map	.Following Text
Figure 2, Site Map	.Following Text
Figure 3, Soil Sample Analytical Map	.Following Text
Figure 4, Groundwater Quality Analytical Map	.Following Text
Figure 5, Geologic Cross Section Perpendicular to the Dissolved-phase Plume	.Following Text
Figure 6, Geologic Cross Section Parallel to the Dissolved-phase Plume	.Following Text
Figure 7, Groundwater Surface Contour Map October 2012 Map	.Following Text
Figures 8 – 13, Groundwater Elevation vs. Precipitation Graphs	.Following Text

LIST OF TABLES

Table 1, Soil Sample Analytical Results	.Following Text
Table 2, Monitoring Well Gauging Data and Groundwater Elevations	.Following Text
Table 3, MW-119 Product Recovery Data	.Following Text
Table 4, Groundwater Sample Analytical Results	.Following Text
Table 5, Soil Sample Characterization Data	.Following Text
Table 6, Summary of Slug Test Results	.Following Text
Table 7, Soil Gas Sample Analytical Results	.Following Text

LIST OF APPENDICES

Appendix B, Soil Sample Analytical Reports.Following TextAppendix C, Groundwater Sample LogsFollowing TextAppendix D, Groundwater Sample Analytical ReportsFollowing TextAppendix E, Dissolved-phase Plume SchematicsFollowing TextAppendix F, Waste Disposal DocumentationFollowing TextAppendix G, Hydraulic Conductivity Test PlotsFollowing TextAppendix H, Fate and Transport Modeling ResultsFollowing TextAppendix I, Soil Gas Sample Point Construction LogsFollowing TextAppendix J, Soil Gas Sample Analytical ReportsFollowing Text	Appendix A, Well Construction Logs	.Following Text
Appendix D, Groundwater Sample Analytical ReportsFollowing TextAppendix E, Dissolved-phase Plume SchematicsFollowing TextAppendix F, Waste Disposal DocumentationFollowing TextAppendix G, Hydraulic Conductivity Test PlotsFollowing TextAppendix H, Fate and Transport Modeling ResultsFollowing TextAppendix I, Soil Gas Sample Point Construction LogsFollowing Text	Appendix B, Soil Sample Analytical Reports	.Following Text
Appendix E, Dissolved-phase Plume Schematics	Appendix C, Groundwater Sample Logs	.Following Text
Appendix F, Waste Disposal Documentation	Appendix D, Groundwater Sample Analytical Reports	.Following Text
Appendix G, Hydraulic Conductivity Test Plots	Appendix E, Dissolved-phase Plume Schematics	.Following Text
Appendix H, Fate and Transport Modeling Results	Appendix F, Waste Disposal Documentation	.Following Text
Appendix I, Soil Gas Sample Point Construction LogsFollowing Text	Appendix G, Hydraulic Conductivity Test Plots	.Following Text
	Appendix H, Fate and Transport Modeling Results	.Following Text
Appendix J, Soil Gas Sample Analytical ReportsFollowing Text	Appendix I, Soil Gas Sample Point Construction Logs	.Following Text
	Appendix J, Soil Gas Sample Analytical Reports	.Following Text

LIST OF ACRONYMS

CLlean clayCOCschemicals of concernEPAUnited States Environmental Protection Agencyfbgfeet below gradefbtocfeet below the top of the well casingfocfractional organic carbonft/dayfeet per dayft/ftfeet per footgm/cm ³ grams per cubic centimetergpd/ft ² gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment systemHarley-DavidsonHarley-Davidson Motor Company Operations, Inc.
EPAUnited States Environmental Protection Agencyfbgfeet below gradefbtocfeet below the top of the well casingfocfractional organic carbonft/dayfeet per dayft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
fbgfeet below gradefbtocfeet below the top of the well casingfocfractional organic carbonft/dayfeet per dayft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
fbtocfeet below the top of the well casingfocfractional organic carbonft/dayfeet per dayft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
focfractional organic carbonft/dayfeet per dayft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
ft/dayfeet per dayft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
ft/ftfeet per footgm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
gm/cm³grams per cubic centimetergpd/ft²gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
gpd/ft2gallons per day per square footgpmgallons per minuteGWTSgroundwater extraction and treatment system
gpmgallons per minuteGWTSgroundwater extraction and treatment system
GWTS groundwater extraction and treatment system
Harley-Davidson Harley-Davidson Motor Company Operations, Inc.
HASP Health and Safety Plan
IDW investigation-derived wastes
LNAPL light non-aqueous phase liquid
mg/kg milligrams per kilogram
ml milliliter
ml/min milliliters per minute
MSC Medium Specific Concentrations
MTBE methyl tertiary-butyl ether
OSHA Occupational Safety and Health Administration
PADEP Pennsylvania Department of Environmental Protection
PID photoionization detector
POC point of compliance
PPE personal protective equipment
PRC post-remedial care
PVC polyvinyl chloride
QA/QC quality assurance/quality control
QD Quick Domenico
RACR remedial action completion report
RAP remedial action plan
SAIC SAIC Energy, Environment & Infrastructure, LLC
SC clayey sand with gravel
SCR Site Characterization Report
SHS Statewide health standard
SSS site-specific standard
SWLs static water levels
TestAmerica TestAmerica Laboratories, Inc.
TOC top of casing
TVOCs total volatile organic compounds
USCS Unified Soil Classification System
UST underground storage tank
VI vapor intrusion
VOA volatile organic analysis
VOA volatile organic analysis VOCs volatile organic compounds
e i
e
μg/L micrograms per liter

1.0 INTRODUCTION

1.1 Purpose

On behalf of Harley-Davidson Motor Company Operations, Inc. (Harley-Davidson), SAIC Energy, Environment & Infrastructure, LLC (SAIC) prepared this supplement to the Site Characterization Report (SCR) addressing regulations in Pennsylvania Code, Chapter 245, Section 310, in accordance with the Storage Tank Spill Prevention Act (Act 32 of 1989). It details the investigation of a release from a 10,000-gallon gasoline underground storage tank (UST) system removed in July 2010 from west of Buildings 45 and 50 (former Harley-Davidson maintenance/garage areas) at 1425 Eden Road in Springettsbury Township, York County, York, Pennsylvania (**Figure 1**). The UST was listed as Tank 009 on Harley-Davidson's Pennsylvania Department of Environmental Protection (PADEP) storage tank registration certificate. The release occurred in the area of the dispenser for Tank 009 (**Figure 2**). Tank 009 replaced Tank 4 (T-4), which was located approximately 35 feet to the south of the Tank 009 dispenser prior to 1991. In both cases, contaminated soil was removed during closure of these USTs, but residual hydrocarbon concentrations remained in the subsurface.

In January 2012, SAIC submitted a report to the PADEP entitled *Site Characterization Report Tank 009 Release, Harley-Davidson Motor Company Operations, Inc., Former York Naval Ordnance Plant, 1425 Eden Road, York, York County, Pennsylvania.* The SCR documented site background and setting and characterized the site conditions based on drilling and sampling eight soil borings; installing and developing four monitoring wells (MW-118, MW-119, MW-120, and MW-121); and sampling these newly installed wells twice. The SCR reported the accumulation of light non-aqueous phase liquid (LNAPL) in MW-119 located at the source, which was presumed as resulting from spillage during gasoline dispensing.

The SCR recommended additional monitoring wells and the evaluation of the vapor intrusion (VI) pathway. In a February 2, 2012, letter to Harley-Davidson, the PADEP approved the January 2012 SCR and concurred with the recommendations for additional site characterization.

The following report supplements the January 2012 SCR by providing the results of the recommended additional characterization activities.

1.2 Report Organization

Following this introductory statement, Chapter 2.0 provides the results of additional activities performed to further characterize the release from Tank 009. Chapter 3.0 includes discussion on potential exposure pathways. Chapter 4.0 reviews the findings and appropriate remediation standards. Conclusions and recommendations are presented in Chapter 5.0. A list of references is included in Chapter 6.0.

2.0 SITE CHARACTERIZATION

2.1 Introduction

In response to the recommendations of the January 2012 SCR, the following additional site characterization activities were completed to further investigate the release from Tank 009:

- June 18 through July 2, 2012 Drilling and sampling of four soil borings converted into monitoring wells (MW-122 through MW-125) and installation of three soil gas sample points (SGSP-1 through SGSP-3).
- June 27 through September 12, 2012 Weekly water level gauging of ten monitoring wells (MW-26, MW-77, and MW-118 through M-125) and three surface water locations (Johnsons Run North, Detention Basin No. 3, and Johnsons Run South) and, when present, LNAPL recovery from MW-119.
- July 18, 2012 Leak testing of SGSP-1 through SGSP-3.
- July 25, 2012 Hydraulic conductivity testing of monitoring wells MW-118, MW-121, MW-122, and MW-124.
- August 1 through August 2, 2012 Collection of groundwater samples from eight monitoring wells (MW-77, MW-118, and MW-120 through MW-125).
- August 15, 2012 Collection of soil gas samples from soil gas sampling points SGSP-1 through SGSP-3.
- August 27 through September 4, 2012 Continuous groundwater level measurements with electronic pressure transducers/data loggers at six monitoring wells (MW-77,

MW-118, MW-120, MW-122, MW-124, and MW-125) and integration of precipitation data.

- September 4 to September 6, 2012 Drilling and sampling of one soil boring converted into a monitoring well (MW-160).
- September 12, 2012 Collection of a second round of soil gas samples from soil gas sampling points SGSP-1 through SGSP-3 and collection of a groundwater sample from MW-160.
- October 8, 2012 A complete gauging round of all monitoring wells installed for Tank 009 was done.

All fieldwork was performed using Level D Occupational Safety and Health Administration (OSHA) personal protective equipment (PPE) in accordance with a site-specific health and safety plan (HASP).

2.2 Soil Borings

2.2.1 Sampling Procedures

On June 18, 2012, four soil borings (MW-122 through MW-125) were completed to further assess the soil conditions upgradient and downgradient of the former dispenser for Tank 009. Based on the results of soil and groundwater sampling, an additional boring, MW-160, was completed on September 4, 2012 (**Figure 2**). The sampling was completed using a direct-push Geoprobe[®] rig. Soil samples were collected in each boring in 5-foot-long dedicated disposable acetate liners from the ground surface to the total depth of the borings (approximately 25 to 40 feet below grade [fbg]). The Geoprobe[®] sampling equipment was decontaminated before use at each sample location by washing with a Liqui-Nox[®]/potable water solution and a potable water rinse. The subsurface stratigraphy encountered in the wells is described in Section 2.4.

2.2.2 Environmental Assessment Results

An SAIC scientist inspected the soil samples for signs of apparent hydrocarbon impact (staining, odors, etc.) and performed screening for total volatile organic compounds (TVOCs) using a photoionization detector (PID). Hydrocarbon impact was not apparent in the five borings. Soil boring logs are included as part of the monitoring well completion logs in **Appendix A**.

Two soil samples were collected from each of the borings at various depths for laboratory analysis. Since hydrocarbon impact was not apparent, one sample was collected midway within the soil column, and one sample was collected at the bottom of the boring. The samples were collected from soils that were not observed to be water-saturated. The soil samples were collected in laboratory-provided Encore[®] samplers (dedicated volumetric samplers for retaining volatiles). Additionally, soil samples from the interval were collected in laboratory-provided four-ounce glass soil jars for moisture analysis. Upon collection, labels were affixed to the sample containers, and they were placed into a cooler with ice and sent to TestAmerica Laboratories, Inc. (TestAmerica). A laboratory-provided quality assurance/quality control (QA/QC) trip blank and a chain-of-custody accompanied the soil samples during shipment. The samples were laboratory analyzed for the PADEP Short List of Petroleum Products (unleaded gasoline) using United States Environmental Protection Agency (EPA) Method 8260B.

The soil sample analytical results are listed on **Table 1** and illustrated on **Figure 3**. A copy of the laboratory analysis reports is included in **Appendix B**. The concentration of benzene (0.95 milligrams per kilogram [mg/kg]) in the sample collected from MW-124 (30.0 to 30.5 fbg) was the only parameter detected above the PADEP Nonresidential Soil-to-Groundwater Contact Medium Specific Concentration (MSC) of 0.5 mg/kg. Note that this standard comparison is for soil above the saturated zone, as there is no regulatory standard for below the saturated zone. Approximately 24 hours after soil sample collection, groundwater levels in MW-124 stabilized at a shallower 15-foot depth. All other unleaded gasoline parameters in MW-124 and all other soil samples were either detected below the PADEP Nonresidential Soil-to-Groundwater MSC or not detected above quantitative reporting limits. None of the detected concentrations in MW-124 or

any other borings were greater than the PADEP Nonresidential Direct Contact MSCs for subsurface soil (2 to 15 fbg).

2.3 Monitoring Wells

2.3.1 Well Drilling and Construction Procedures

On June 20 through 22, 2012, four monitoring wells were installed by Eichelbergers, Inc., using a hollow-stem auger rig under SAIC oversight after completion of the soil borings. These wells were designated MW-122 through MW-125. On September 4, 2012, an additional monitoring well (MW-160) was installed downgradient of MW-124, with respect to the groundwater hydraulic gradient.

Monitoring wells were constructed using 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing and screen. The drilling and sampling equipment was decontaminated with a pressure washer between each location. The tops of the wells were completed within flush-on-grade manhole covers that were concreted in place. The following is a summary of the drilling and construction activities for each of the wells:

- MW-122 Drilling started on June 20, 2012, approximately 80 feet to the east of the former dispenser for Tank 009 in an anticipated upgradient direction, with respect to groundwater flow. The well was drilled to a depth of approximately 30 fbg, and the well screen was installed from approximately 7 to 30 fbg.
- MW-123 Drilling started on June 20, 2012, approximately 70 feet to the north of the former dispenser for Tank 009 in an anticipated cross-gradient location, with respect to groundwater flow. The well was drilled to a depth of approximately 30 fbg and the well screen installed from approximately 7 to 30 fbg.

- MW-124 Drilling started on June 20, 2012, approximately 60 feet to the south of the former dispenser for Tank 009 in an anticipated cross-gradient location, with respect to groundwater flow. Drilling was competed to a total depth of approximately 34 fbg and the well screen installed from approximately 8 to 34 fbg.
- MW-125 Drilling started on June 21, 2012, approximately 140 feet to the southwest of the former dispenser for Tank 009 in an anticipated downgradient location, with respect to groundwater flow. Drilling was completed to a total depth of approximately 24 fbg and the well screen installed from approximately 4 to 24 fbg.
- MW-160 Drilling started on September 4, 2012, approximately 150 feet to the south of the former dispenser for Tank 009 in an anticipated downgradient location, with respect to groundwater flow. Drilling was completed to a total depth of approximately 38 fbg and the well screen installed from approximately 6 to 38 fbg.

The monitoring wells were developed by SAIC with a submersible pump following installation. All wells were developed until the discharge was relatively free of sediment or the well was dewatered. The wells each had a yield of approximately 0.5 to 1 gallon per minute (gpm).

2.3.2 Well Surveying

Following the completion of the monitoring well installations, a Pennsylvania-licensed land surveyor from Nutec Group of York, Pennsylvania, conducted a survey of the horizontal and vertical positions of monitoring wells MW-26, MW-77, and MW-118 through MW-125. In addition, surface water gauging stations Johnsons Run North, Detention Basin No. 3, and Johnsons Run South were established and surveyed. At each monitoring well location, the elevation of the top of casing (TOC) and the top of the exterior protective casing were measured to the nearest 0.01 foot and vertically referenced to the North American Datum 1983 (NAD 83). For surface water gauging stations, the elevation of a reference measurement point was measured. The horizontal locations were also measured to the nearest 0.01 foot of the NAD 83 -

Pennsylvania State Plane South US feet. The horizontal location of MW-160 was measured by SAIC using a steel tape from surveyed reference points for inclusion on the site map. The vertical elevation of MW-160 was measured by SAIC relative to MW-121 using an auto level/stadia rod to within 0.01 foot.

2.3.3 Well Gauging

Monitoring wells MW-26, MW-77, and MW-118 through MW-125 were gauged for depth-togroundwater and presence/absence of LNAPL using an interface probe. SAIC gauged the monitoring wells weekly between June 27 and September 12, 2012. After MW-160 was installed, it was gauged on September 12 and followed by a complete gauging round on October 8, 2012 (**Table 2**). The depth to groundwater in the wells ranged from approximately 7 feet below the top of the well casing (fbtoc) in MW-118 to 25 fbtoc in MW-26.

LNAPL resembling gasoline accumulated in monitoring well MW-119 located at the former gasoline dispenser. No other monitoring well exhibited LNAPL; however, depth to groundwater was above the top of the screened interval in wells MW-118 and MW-77. In MW-118, groundwater was approximately 1 foot above the top of the well screen, and in MW-77, groundwater was approximately 20 feet above the top of the well screen. As MW-119 was the only monitoring well to accumulate LNAPL, the lateral extent of LNAPL is relatively limited.

The LNAPL thickness in MW-119 ranged from a maximum of 0.23 feet on July 10, 2012, to 0.02 feet on subsequent occasions. When measured in MW-119, LNAPL was recovered by bailing and measured in a calibrated clear glass container (**Table 3**). Between June 27 and July 25, 2012, a total of 670 milliliters (ml) of LNAPL was recovered from the well. Subsequent gauging registered a thickness of between 0.02 and 0.03 feet, but manual bailing indicated no LNAPL; thus, 0.02 feet of LNAPL was the accuracy limit of the interface probe. Considering that natural capillary forces cause LNAPL to accumulate in monitoring wells at greater thicknesses than in the aquifer, the measurements support a limited LNAPL thickness in the

subsurface. The fact that LNAPL only accumulated in one well indicates residual LNAPL volume in the subsurface is minor.

2.3.4 Groundwater Sampling

Three rounds of groundwater samples were collected by SAIC from monitoring wells MW-118, MW-120, and MW-121 (August 25, 2011; September 30, 2011; and August 1, 2012). MW-119 was sampled twice (August 25, 2011, and September 30, 2011) but not during any of the recent events due to LNAPL accumulation. Two rounds of groundwater samples were collected from monitoring wells MW-122 through MW-125 (July 2 and August 1, 2012). Two rounds of groundwater samples were collected from monitoring wells MW-122 through MW-126 (July 2 and August 1, 2012). Two rounds of groundwater samples were collected from monitoring well MW-77 (June 24, 2011, and August 1, 2012). MW-26 was not sampled.

The wells were purged prior to sampling with a submersible pump at a relatively low purge rate (i.e., less than approximately 0.5 gpm) to minimize the drawdown of the groundwater level in the wells. The pump was decontaminated before use at each well by washing with a Liqui-Nox[®]/potable water solution and a potable water rinse. During purging, water quality field parameters were measured and recorded (temperature, pH, conductivity, dissolved oxygen, and turbidity). The water quality field parameters were documented on the sampling logs included in **Appendix C**. Upon stabilization of the field parameters during purging, groundwater samples were collected directly from the dedicated pump discharge tubing into laboratory-provided 40 ml volatile organic analysis (VOA) vials containing preservative (i.e., hydrochloric acid). Additionally, QA/QC samples during all rounds of groundwater sampling consisted of a laboratory-provided trip blank.

Upon collection, labels were affixed to the sample containers, and they were placed into a cooler with ice and a chain-of-custody. The groundwater samples were submitted to TestAmerica for laboratory analysis of the PADEP Short List of Petroleum Products (unleaded gasoline) using EPA Method 8260B. The analytical results for the groundwater samples are summarized on

Table 4 and **Figure 4**. Copies of the laboratory analysis reports are included in **Appendix D**, and schematic illustrations of the dissolved-phase plume of each gasoline constituent detected above its respective PADEP Nonresidential Used Aquifer MSC are presented in **Appendix E**.

The following is a summary of the groundwater sample analytical data:

- Unleaded gasoline constituents were detected in the samples from MW-77, MW-118, MW-120, MW-121, MW-124, and MW-160 at concentrations above the PADEP Nonresidential Used Aquifer MSCs for groundwater.
- Groundwater samples collected from MW-77, MW-121, and MW-124, located generally south and west of the former Tank 009 dispenser, contained the highest concentrations of unleaded gasoline constituents compared to the concentrations detected in the other wells that were sampled. This indicated that migration of dissolved-phase hydrocarbons is generally south and southwest.
- The concentrations of benzene and MTBE detected in the groundwater sample from MW-120 were relatively low, and MW-122, MW-123, and MW-125 had non-detectable concentrations of all analyzed parameters.
- 4. The extent of dissolved-phase unleaded gasoline parameters in groundwater was generally delineated by wells MW-120, MW-122, MW-123, MW-125, and MW-160.

2.3.5 Investigation-Derived Waste Management

Investigation-derived waste (IDW) that was generated during the monitoring well installations, development, and sampling was containerized and managed by Harley-Davidson. The soil (i.e., drill cuttings) was disposed as nonhazardous waste at Modern Landfill in York, Pennsylvania. The groundwater was treated at the on-site Harley-Davidson groundwater treatment system (GWTS) on or about September 12, 2012 (**Appendix F**).

2.4 Subsurface Stratigraphy

The subsurface stratigraphy, soil sample depths, monitoring well screen intervals, and groundwater elevations in the study area are illustrated by **Figure 5** and **Figure 6**. Unconsolidated materials extend to a depth of greater than 67 fbg in the immediate study area and to a depth of approximately 25 fbg to the west of the study area (see well construction logs in **Appendix A**). The unconsolidated materials encountered were heterogeneous (i.e., variable both laterally and vertically) clay, silt, sand, and gravel. Shallow fill materials present are likely associated with historical development/construction activities. Examples of fill material include gravel that was used to backfill the former UST excavations and underground utilities. Limestone bedrock was encountered during drilling of monitoring well MW-125.

During August 2011, two samples of the unconsolidated materials were collected during the drilling of the monitoring wells for laboratory analysis of physical parameters. The samples were obtained using a thin-walled metal tube (i.e., Shelby tube) that facilitated the collection of a relatively intact (i.e., undisturbed) sample. The samples were collected from a depth of approximately 17 to 19 fbg in MW-118 and approximately 33 to 34.7 fbg in MW-121. The samples were sent with a chain-of-custody to TestAmerica for analysis of total organic carbon, percent solids, density, specific gravity, porosity, and grain size.

Results of the sample analyses are summarized on **Table 5**. Based upon the Unified Soil Classification System (USCS), the grain size analysis indicated that the sample from MW-118 was lean clay (CL) and the sample from MW-121 was clayey sand with gravel (SC). The physical parameters of the samples indicated a mean fractional organic carbon (foc) content of 0.162 percent and a mean bulk density of 1.85 grams per cubic centimeter (gm/cm³). These characteristics were used as input to a groundwater fate-and-transport model discussed later in this report.

2.5 Hydrologic Conditions

2.5.1 Monitoring Wells and Manual Gauging

Discontinuous zones of water-saturated overburden materials were encountered at various depths during the drilling of the monitoring wells, as follows:

- MW-118 In clay from approximately 15 to 25 fbg.
- MW-119 In gravel from approximately 25 to 27 fbg.
- MW-120 In gravel from approximately 36 to 39 fbg.
- MW-121 In clay from approximately 10.5 to 12 fbg and 15 to 17 fbg, and in sand from approximately 31 to 32 fbg.
- MW-122 In silt from approximately 25 to 30 fbg.
- MW-123 In gravel from approximately 25 to 27 fbg.
- MW-124 No distinct water-bearing zone (WBZ) was encountered.
- MW-125 In gravel from approximately 20 to 22 fbg.
- MW-160 In clay from approximately 20 to 22 fbg.

Water-saturated unconsolidated materials were present in areas where fill is extensive, or infiltration is enhanced relative to other locations (e.g., former UST excavations, utility corridors, etc.). These conditions, coupled with the underlying fine-grained subsurface strata, caused perched groundwater in some locations.

During the drilling of monitoring wells MW-118 through MW-125 and MW-160, groundwater was observed to rise in the boreholes after intercepting water-saturated materials (e.g., WBZs). The static water levels (SWLs) in the wells stabilized at depths above the WBZs. For example, in well MW-120, water-saturated gravel was encountered at approximately 36 to 39 fbg, and the SWL in the well subsequently rose to approximately 12 fbg after well construction. Additionally, similar conditions were documented for MW-77. These conditions suggested that the aquifers penetrated by the wells are partially or fully confined.

Depth-to-groundwater measurements in the monitoring wells within the study area were subtracted from TOC elevations to calculate groundwater elevations (**Table 2**). A groundwater elevation contour map prepared from the wells on October 8, 2012, presented on **Figure 7** is representative of the hydraulic gradient. The hydraulic gradient indicated by the wells is approximately 0.05 feet per foot (ft/ft) southwest from the area of the former dispenser for Tank 009. In general, the hydraulic gradient forms a trough that trends from MW-119 downgradient toward MW-160. Johnsons Run and the storm water line are upgradient, north and east of the study area and, thus, are not a destination for or preferential pathway of groundwater-borne hydrocarbon migration from the former Tank 009 dispenser. These features may recharge the shallow aquifer at times of precipitation.

2.5.2 Continuous Groundwater Level Measurements

On August 27, 2012, electronic pressure transducer/data loggers were installed at fixed depths below the groundwater to monitor the typical range of groundwater elevations in monitoring wells MW-77, MW118, MW-120, MW-122, MW-124, and MW-125. The loggers were programmed to record groundwater levels on a frequency of once every 10 minutes. The groundwater elevations in MW-118 and MW-122 (on the east side of the study area) were consistently higher than at other wells. The groundwater elevations in MW-119, MW-121, and MW-124 were similar to each other and approximately eight feet lower than the elevations in MW-118 and MW-122 during the period. The groundwater elevation in MW-77 (at approximately 65 feet, the deepest of the 10 wells in the study area) was consistently lower than those in nearby MW-120 and MW-124.

On September 4, 2012, after nine days, the data loggers were collected and downloaded in the field into a computer and saved for processing and interpretation. The data logger installed in MW-125 was found as defective and did not record water level data. The recorded groundwater levels (**Figures 8** through **13**) were converted to groundwater elevations and plotted graphically. Daily precipitation data for the groundwater monitoring period were provided by Clean Harbors

from the rain gauge located near Outfall 004 on the south side of former Building 2. Rain events occurred on August 26 (0.1 inch [in.]), August 27 (1.0 in.), August 28 (0.05 in.), September 3 (0.2 in.), and September 4, 2012 (1.75 in.). The precipitation data were plotted graphically with groundwater elevation for interpretation of each well's response to a rain event.

MW-122 and MW-124 responded to rain events similarly. Both wells showed a fairly rapid response and decline after precipitation. The magnitude of the response was greater in height in MW-124. MW-77 responded and declined slower than MW-122 and MW-124. MW-118 showed a delayed and muted response to rain events. MW-120 showed the greatest delay in responding to precipitation. Water-saturated material was described as gravel in MW-120. All wells showed low magnitude diurnal changes in water level during non-precipitation events. These changes in water level were attributed to "earth tides," slight variations in water level due to the gravitational effects of the moon and sun.

The lack of consistent well water level responses during and after the rain events supports the presence of heterogeneous earth materials, discontinuous WBZs, and varying degrees of aquifer permeability (hydraulic conductivity) and confinement. Rapid water level responses to precipitation and rapid rate of recession afterward at MW-77 suggested a responsive aquifer with high hydraulic conductivity relative to other site wells. MW-77 had a rapid response in combination with approximately 0.6 foot of water level change during the monitoring period, which was attributed to confinement of the WBZ. Rapid water level responses to precipitation and slow rate of recession afterward by MW-122 and MW-124 suggested unhindered infiltration but relatively low hydraulic conductivity at the wells. The approximately 0.7 foot of water level change by MW-124 during the monitoring period was attributed to confinement of the WBZ within the clay where the screen was installed. An approximately 0.25 foot of water level change by MW-122 during the monitoring period was attributed to relatively limited confinement of the gravel WBZ where the screen was installed. Slower water level responses to precipitation, rapid recession rate, and diurnal variations (earth tides) were observed at MW-118. These characteristics suggested a confined aquifer with low hydraulic conductivity relative to other site wells. The water-saturated material in MW-118 was described as clay. A very slow

water level response to precipitation and very slow recession at MW-120 suggested low hydraulic conductivity.

2.6 Hydraulic Conductivity Testing

2.6.1 Procedure

On July 25, 2012, hydraulic conductivity "slug" testing was conducted by SAIC on select monitoring wells (MW-118, MW121, MW-122, and MW-124). Slug testing is a field method that provides an estimate of the hydraulic conductivity (K) of the water-saturated materials intercepted by a well screen. K is defined as the rate of groundwater discharge through a unit aquifer cross-section under a unit gradient and is the capacity of a porous medium to transmit water. K values calculated from slug tests represented an average for the entire thickness of water-saturated materials intercepted by the well screens.

The slug tests were completed by instantaneously adding or removing a known solid inert volume (slug) into/from the well with continuous pressure transducer/data logger measurement of water level recovery to static conditions. Each well was tested multiple times to demonstrate repeatability and reliability of test results. After completion of each slug test, the data were downloaded from the data logger and saved for processing and interpretation. Data from the rising head tests were analyzed to calculate K using Aqtesolve TM for Windows by applying the Bower-Rice method (1976). The K values for falling head (slug-in) tests were not considered representative and not used.

2.6.2 Results

The resulting K values for the slug tests are summarized on **Table 6**. The graphic plots of the test are included in **Appendix G**. The following is a summary of the test results:

- The K values for the individual wells range over two orders of magnitude, reflective of the heterogeneous nature of the subsurface character. The values are within the range published for unconsolidated materials composed of silt and sand (Freeze, R. V., and J. A. Cherry, 1979).
- MW-121 and MW-124 have the lowest average K values (0.1 gallon per day per square foot [gpd/ft²] or less than 0.01 foot per day [ft/day]).
- MW-122 has the highest average K value (33.4 gpd/ft² or 4.5 ft/day). The well penetrates well-graded gravel with silt matrix.
- A geometric mean K value for the site is approximately 0.8 gpd/ft² or approximately 0.1 ft/day, which represents the overall site character.

2.6.3 Groundwater Fate-and-Transport Modeling

2.6.3.1 Objective and Method

Fate-and-transport modeling was conducted to assess the potential future extent of dissolvedphase hydrocarbon migration in groundwater from the Tank 009 dispenser release toward Eden Road, the downgradient (southwest) property boundary (point of compliance [POC]). The modeling was completed using the revised Quick Domenico (QD) model available on the PADEP Land Recycling Program website. QD is a Microsoft Excel[®] spreadsheet application of *An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species*, by P. A. Domenico (Journal of Hydrology, 91 [1987], pp 49-58). QD considers three-dimensional dispersion, first-order decay, and retardation of dissolved-phase hydrocarbons as they migrate from a known source. It calculates the concentrations of constituents at any time and distance downgradient of a source area of known size and concentration. QD is a conservative model that assumes a constant source concentration and no mass reduction of the source materials by natural microbial degradation.

2.6.3.2 Fate-and-Transport Model Input Data

Source – The source of the groundwater impact was a subsurface release of unleaded gasoline from the former unleaded gasoline Tank 009, which was installed in 1991. The release(s) occurred between 1991 and July 2010, when the former UST was removed. MW-119 was installed at the source and represents the groundwater conditions at the source approximately 20 years since the oldest potential release date. The hydraulic gradient is southwest from MW-119, and the results of the groundwater sample analyses suggest that the axis of the dissolved hydrocarbon plume is aligned from MW-119 through MW-124 past MW-160.

Chemicals of Concern (COCs) – Benzene, ethylbenzene, methyl tertiary-butyl ether (MTBE), naphthalene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene were detected in groundwater at concentrations above their Non-residential Used Aquifer Groundwater MSCs.

Source Concentrations – The source concentrations were represented by MW-119. Concentrations of COCs used in the model were those of MW-119 before LNAPL accumulated and as described below:

- Benzene $15,000 \mu g/L$ or 15 milligrams per liter (mg/L).
- Ethylbenzene 2,600 μ g/L or 2.6 mg/L.
- MTBE $800 \,\mu g/L \text{ or } 0.80 \,m g/L.$
- Naphthalene $-280 \,\mu g/L$ or 0.280 mg/L.
- Toluene $18,000 \,\mu g/L$ or $18 \,mg/L$.
- 1,2,4-trimethylbenzene 1,300 μ g/L or 1.3 mg/L.
- 1,3,5-trimethylbenzene $480 \mu g/L$ or 0.480 mg/L.

Maximum detected groundwater concentrations were used for ethylbenzene, naphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and toluene. Estimated concentrations that were slightly higher than the maximum detected concentrations were used for benzene and MTBE

because these two compounds are more likely to migrate and degrade based on their physicalchemical properties. Thus, benzene and MTBE concentrations may have been higher in the source area prior to the installation and sampling of the monitoring wells. The higher assumed source concentrations assumed for benzene and MTBE provided more protective results and better calibration of the QD model with observed field data.

Distance to Location of Concern (X) – Modeling was performed for contamination migration from MW-119, toward MW-160, and further southwest toward Eden Road. The distance to the location of concern (i.e., POC) is 1,650 feet.

Longitudinal Dispersivity (Ax) - A default value to 50 was used for the model, based upon SAIC's experience conducting modeling at similar sites.

Transverse Dispersivity (Ay) - A value of 5 was used based upon Ax/10, as per the model instructions.

Vertical Dispersivity (Az) – The model recommended default value of 0.001 was used for the model. The QD model is not sensitive to this parameter.

Lambda (days-1) – The degradation coefficients were obtained from Appendix A, Table 5, of the PADEP Chapter 250 (Act 2) Regulations. The published lambda values were divided by 365 to obtain lambda values in days-1:

- Benzene 0.35 years-1 or 0.00096 days-1
- Ethylbenzene 1.11 years-1 or 0.003 days-1
- MTBE 0.693 years-1 or 0.0018 days-1
- Naphthalene 0.98 years-1 or 0.0027 days-1
- Toluene 9.01 years-1 or 0.0247 days-1
- 1,2,4-trimethylbenzene 4.5 years-1 or 0.012 days-1

• 1,3,5-trimethylbenzene – Value not published. The lambda value for 1,2,4-trimethylbenzene was used.

Source Width – No additional soil was removed when UST Tank 009 was removed. A source width was unknown but conservatively presumed to be 30 feet.

Source Thickness – A source thickness was unknown but conservatively presumed at a thickness of 10 feet.

Hydraulic Conductivity (**K**) – Based on the slug testing, the hydraulic conductivity for the aquifer is approximately 0.8 gpd/ft² or 0.1 ft/day (**Table 6**); however, because a range of hydraulic conductivities was measured, a 90 percent confidence value of approximately 0.2 ft/day was used to account for variations of subsurface characteristics in the model.

Hydraulic Gradient – Based upon groundwater elevations from October 8, 2012 (**Figure 7**), the hydraulic gradient from MW-119 to MW-160 was 0.05 ft/ft.

Effective Porosity – The analysis of soil samples from the unconsolidated materials in the saturated zone indicated total porosities of 34.1 and 28.2 percent (0.341 and 0.284). The effective porosity is typically lower than the total porosity. Thus, an assumed effective porosity of 20 percent (0.2) was used in the model.

Bulk Density – The analysis of soil samples from the unconsolidated materials in the saturated zone indicated a bulk density of 1.77 gm/cm³ and 1.94 gm/cm³. Thus, the mean of bulk density used in the model was 1.85.

Organic Carbon Partition Coefficient (Koc) – The following Koc values were obtained from Appendix A, Table 5, of the Act 2 Regulations:

- Benzene 58
- Ethylbenzene 220
- MTBE 12
- Naphthalene 950
- Toluene 130
- 1,2,4-trimethylbenzene 2,200
- 1,3,5-trimethylbenzene 660

Fractional Organic Carbon (foc) – The analysis of soil samples from the materials in the saturated zone indicated the foc of 0.1410 percent (0.0014) and 0.1850 percent (0.0018). Thus, a mean of 0.1615 percent (0.0016) was used in the model.

2.6.3.3 Plume Stabilization

The plume of dissolved-phase gasoline constituents originates from residual hydrocarbons in the soil around the former dispenser and migrates southerly from MW-119 through MW-124, then southwest past MW-160. This plume alignment is supported by the groundwater hydraulic gradient (**Figure 7**). The QD modeling results in **Appendix H** illustrate the predicted concentrations of benzene, ethylbenzene, MTBE, naphthalene, toluene, 1,2,4-trimethlybenzene, and 1,3,5-trimethlybenzene using assumed source concentrations (MW-119) and downgradient migration after 20 and 50 years from the presumed time of release. These time frames related to present and 30-year periods.

The concentrations were modeled using conservative assumptions of site characteristics, which yielded protective estimates of plume extent toward the POC. A range of modeled time periods was examined to observe the plume spread until stabilization due to naturally occurring physical, chemical, and biological degradation (i.e., natural attenuation). Stabilization was indicated by the decrease in the rate of plume expansion between successive modeled time periods. **Appendix E** illustrates schematically the current position and concentration of the dissolved-phase plume of each gasoline constituent detected above its respective PADEP Nonresidential

Used Aquifer MSC and the simulated extent of the plume downgradient from the present position in 30 years. These illustrations indicate that the plume of most constituents has essentially stabilized at their current positions and will have little propensity to migrate even if the source concentrations do not decline in 30 years. Only benzene and MTBE show a potential to migrate during the interval, but the extent of migration is exceedingly small.

2.6.3.4 Model Sensitivity

Conservative site-specific input parameters were used in the QD model, and differing degrees of sensitivity to varying input parameters were observed. Most of the input parameters were conservative (such as using maximum source concentrations and assuming no source depletion) to be protective and account for the variability in the subsurface character. The results of modifying the model input parameters within various ranges or limits are not presented herein.

2.6.3.5 Model Calibration

Model calibration was done by comparing QD predictions with measured concentrations of gasoline constituents. As Tank 009 was installed in 1991, the focused of calibration was the 20-year time frame (i.e., the present day). Comparison of the model predictions at 20 years to the recent groundwater data showed relatively good model calibration for benzene and MTBE with slightly higher than the measured concentrations. For example, monitoring well MW-124 (located approximately 60 feet south of MW-119) had an average benzene concentration of 1,850 μ g/L, while the QD model predicted a higher concentration of 2,269 μ g/L. Monitoring well MW-160, located approximately 150 feet downgradient, had a benzene concentration of 180 μ g/L, which was predicted by the QD model at 280 μ g/L for the same time frame. MW-124 had an average MTBE concentration of 42 μ g/L, while the QD model at 280 μ g/L, while the QD model at 11 μ g/L. The higher model-predicted concentrations relative to measured concentrations are protective and resulted from presuming higher initial concentrations of these constituents, as explained in Section 2.6.3.2. The general agreement of the QD model with

measured concentrations confirmed model calibration and enabled the model to be run for determining the extent of benzene and MTBE at various time frames.

Other gasoline constituents were less similar between the QD model predictions and the measured concentrations at 20 years, even with the characteristics reasonably calibrated for benzene and MTBE. For example, ethylbenzene at MW-124 had an average concentration of 810 μ g/L, but the QD model predicted less than 29 μ g/L. At MW-160, ethylbenzene was 12 μ g/L with a prediction of less than 1 μ g/L. Toluene at MW-124 had an average concentration of 6,200 μ g/L and a predicted concentration of 1 μ g/L. Naphthalene at MW-124 had an average concentration of 1,070 μ g/L, but the QD model predicted less than 1 μ g/L. Concentrations of 1,2,4-trimethlybenzene and 1,3,5-trimethlybenzene were also dissimilar between the QD model and actual measured concentrations.

The calibration of the QD model was successful for predicting the future migration fate and transport of the most important gasoline constituents—benzene and MTBE—but not for ethylbenzene, toluene, naphthalene, 1,2,4-trimethlybenzene, and 1,3,5-trimethlybenzene. Possible explanations for the disagreement of the QD model with measured conditions include the influence of heterogeneity of the subsurface materials, as all variations could not be anticipated with the generalized characteristics modeled. An alternative explanation is multiple releases at different times and different locations occurred at or around Tank 009. The heterogeneity of the subsurface may have afforded impact to occur in the groundwater at different times and concentrations than presumed. Finally, a source separate from Tank 009, such as the predecessor UST (T-4) that was located closer to MW-124, may be the source of the QD model calibration difficulties. The T-4 release was discovered in October 1991 and was remediated; however, soil sampling performed in December 1997 documented residual hydrocarbon impact remained in the subsurface. Being older, a T-4 source would possibly be depleted of benzene and MTBE and relatively enriched by the other gasoline constituents.

The importance of the QD model calibration is the greater comparative calibration accuracy for benzene and MTBE and the fact that these two gasoline constituents are of primary importance

to potential impact because of their toxicity and mobility. The fact that the other constituents are not present above the MSCs at downgradient well MW-160 supports that they are less mobile, even if they originated closer to MW-124 than MW-119.

2.6.3.6 Limitations

The QD model has some inherent limitations as discussed above. Another limitation is that the model assumed a single and continuous source of contamination. This may partially be the case as the primary source of the contamination (Tank 009) was removed in 2010, but residual hydrocarbons persist indicated by the presence of LNAPL, albeit in minor volumes. It is expected that natural processes will reduce the mass flux of hydrocarbon contribution to the groundwater over time, but QD conservatively discounts that possibility.

Additionally, the QD model assumed the plume is migrating steadily through homogeneous subsurface materials, which is not the case for the site. However, the model predictions are generally useful, consistent with the site-specific data for benzene and MTBE, and protective with respect to predicting the maximum downgradient extent of these two important gasoline constituents with respect to toxicity and mobility.

2.6.3.7 Model Results

The results of the modeling (i.e., QD model spreadsheets) are presented in **Appendix H**. Model predictions were calculated for time scenarios ranging from the earliest possible release date 20 years ago and 50 years ago, the 30-year duration required for evaluation. Examination of the concentration versus distance trends from the measured groundwater concentrations at various times in the future suggested that the plume is stable.

The model predictions indicated that detectable concentrations of the most mobile constituents benzene and MTBE—would not reach the downgradient POC at any time in the near future or up to 30 years from current time. The higher mobility and lower MSCs of benzene and MTBE and the stability of the plume indicate that ethylbenzene, toluene, naphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene will not reach the POC at any time in the near future or 30 years despite the variation of the model from measured concentrations.

2.7 Vapor Intrusion

2.7.1 Objective and Method

The presence of LNAPL and concentrations of gasoline constituent concentrations in soil and groundwater samples (**Table 1** and **Table 4**, respectively) exceeding VI screening values in PADEP's November 2004 Vapor Intrusion into Buildings from Groundwater and Soil under the Act 2 Statewide Health Standard (SHS) indicated that further evaluation of the vapor intrusion pathway was necessary. Therefore, further investigation of VI by soil gas sampling was completed.

2.7.2 Soil Gas Sample Point Installations

Soil gas sample points were installed and sampled to further evaluate the VI pathway. On June 21, 2012, three soil gas sample points (SGSP-1 through SGSP-3) were installed to a depth of approximately 6 fbg. The locations of the sample points are illustrated on **Figure 2**, and the construction logs are included in **Appendix I**. The soil gas sample points were installed with a direct-push drill rig and a solid point. No cuttings were produced; therefore, no lithologic description was possible. Groundwater was not encountered during sample point installation.

The sample points were constructed using one-inch-diameter flush-threaded PVC well casing and screen. A 2-foot section of well screen was installed at the base of each sample point at a depth of approximately 4 to 6 fbg, which is a depth range of industrial building foundations. Sand was used to fill the boring annulus around the well screen from approximately 3 to 6 fbg. A bentonite seal was placed from 1 to 3 fbg. The sample points were completed at grade with flush-on-grade manhole covers, concreted in place.

2.7.2 Soil Gas Sample Collection and Laboratory Analytical Results

Soil gas samples were collected by SAIC from SGSP-1 through SGSP-3 on August 15 and September 12, 2012. Before collecting the samples, an attempt was made to purge the sample points of approximately three times their internal volumes using a battery-powered, calibrated, low-flow pump to remove stagnant air. During both sampling events, the vacuum provided by the purge pump was insufficient to draw air from SGSP-1 and SGSP-2, which indicated low gas permeability; however, Summa[®] canisters have higher vacuum available than the purge pump. Additionally, on both occasions, water had to be bailed from SGSP-2 prior to purging.

Soil gas samples were collected using laboratory-provided, evacuated, stainless steel Summa[®] canisters connected to the sample points via Teflon[®]-coated plastic tubing. The Summa[®] canisters were fitted with a flow-control device calibrated to collect a continuous sample over a 1-hour period at a rate of less than 100 milliliters per minute (ml/min). One upwind ambient air sample was collected during each round of sampling to assess background conditions. After each sampling event, the Summa[®] canisters and completed chain-of-custody form were sent to TestAmerica for analysis of the unleaded gasoline UST parameters using EPA Method TO-15 by gas chromatograph/mass spectrometry (GC/MS).

A leak test was done by SAIC using a tracer gas (helium) at each of the sample points to determine whether it potentially leaked atmospheric air. Helium is a commonly used tracer gas able to permeate the smallest gaps or perforations, including the ability to penetrate pavement. This test was performed prior to collection of the first round of soil gas samples on August 15, 2012. The helium was introduced into a sealed container that covered the sample point. The container was equipped with a monitoring port where the internal helium concentration was measured and a port where the sample point could be purged and sampled for helium with a helium detector. After purging an air volume equal to three sample point volumes, a sample was collected into a Tedlar[®] bag using a vacuum box. The sample was analyzed with a hand-held helium detector. As seen during soil gas sample collection, the purge pump was unable to draw enough air from SGSP-1 and SGSP-2 to fill a Tedlar[®] bag, so no testing for

helium could be made. The inability of the purge pump to fill a Tedlar[®] bag indicated these points likely were not leaking atmospheric air. Similarly, the subsurface migration of vapors into indoor air spaces would be precluded by the low gas permeability exhibited at SGSP-1 and SGSP-2.

The leak test performed on SGSP-3 detected helium, showing that atmospheric air was potentially leaking into the point. The areas around the contact between the sample point riser and concrete within the flush-mount manhole and around the contact between the flush-mount skirt and concrete pad were sealed with plumber's putty. The point was retested but continued to detect helium. A Summa[®] canister sample at SGSP-3 was taken recognizing the potential for atmospheric air dilution.

The analytical results of the soil gas samples are summarized on **Table 7**, and copies of the laboratory analysis reports are presented in **Appendix J**. No difficulty with a low gas sample volume in SGSP-1 and SGSP-2 was indicated by the laboratory as a result of the low gas permeability within the soil. The soil gas sampling detected quantified and estimated concentrations of all gasoline target constituents except MTBE. The soil gas sampling results were evaluated in accordance with the Land Recycling Program Technical Guidance Manual criteria for soil gas samples at 100 times the MSC for indoor air. None of the soil gas samples detected any target constituent concentrations that exceeded 100 times the MSC for indoor air. Therefore, the site conditions do not indicate a VI concern.

3.0 DISCUSSION OF POTENTIAL EXPOSURE

3.1 Groundwater

Groundwater sampling conducted in 2011 and 2012 detected dissolved-phase unleaded gasoline parameters and LNAPL in groundwater at concentrations greater than the PADEP Nonresidential Used Aquifers MSCs (**Table 4**). The age of Tank 009 and the modeling discussed in Section 2.6.3 indicated that gasoline constituents are at equilibrium in groundwater and will not change or migrate to the POC. The groundwater is at depth; therefore, no groundwater or LNAPL exposure to employees, contractors, or the general public is possible. The site is being redeveloped for nonresidential (commercial) use, and the anticipated future use of the site is for commercial purposes. A local water use ordinance requires connection to public water; however, the ordinance does not completely eliminate the potential future use of groundwater. As groundwater is predicted to meet the MSCs at the POC now and in the future, the release does not pose a threat to public or private water supply wells.

3.2 Surface Water

Johnsons Run is upgradient and not a pathway of groundwater-borne hydrocarbon migration from the former Tank 009 dispenser. The groundwater flows southwest eventually discharging to the Codorus Creek over 2,000 feet away. This is past the POC where gasoline constituents are not predicted to reach; therefore, it is expected that groundwater migrating from former Tank 009 to the Codorus Creek will meet Chapter 93 Water Quality Criteria. Based on these conditions, there is no threat to the public or aquatic exposure now or in the future.

3.3 Soil

The laboratory analysis of soil samples collected during the removal of Tank 009 and the site characterization activities documented that surface soil is not impacted and the release from Tank 009 impacted only subsurface soils with no concentrations of unleaded gasoline parameters

detected above the PADEP Nonresidential Direct Contact MSCs for subsurface soil (2 to 15 fbg); thus, the release does not pose a threat to construction workers, employees, or the public by direct contact. Concentrations of unleaded gasoline parameters were above the Nonresidential Soil-to-Groundwater MSCs; therefore, the concerns are limited to the soil to groundwater pathway with the groundwater pathway not posing a current or future threat as described in Section 3.1 with no significant change in these conditions in the future. Also, as the release was to the subsurface and there is no surface soil impact, there is no threat of dust-borne contamination migration.

3.4 Indoor Air

The vapor intrusion pathway from soil and groundwater to indoor air was eliminated because soil gas samples met MSCs as discussed in Section 2.7. No change in this condition is expected in the future. As the site is planned for nonresidential development, the soil or groundwater VI pathway poses no threat.

3.5 Ecological Receptors

The subsurface hydrocarbon impact from the Tank 009 release does not pose an unacceptable risk to potential ecological (terrestrial) receptors based upon the following criteria:

- The current and anticipated future use of the site is for nonresidential (commercial) purposes.
- The ground surface is predominantly covered with buildings, asphalt paving, concrete, etc., which prevent exposure by terrestrial receptors.
- Surface soil is not impacted; the release from Tank 009 impacted subsurface soils.
- Terrestrial receptors are not directly exposed to groundwater.

• There are no known threatened or endangered species indicated at the site.

Moreover, the unleaded gasoline parameters detected in soils and groundwater in the study area are various constituents of petroleum products, which were detected at relatively low concentrations and not directly discharging at the surface or in surface water. Petroleum products are susceptible to biodegradation and are not highly toxic to ecological receptors at low concentrations.

4.0 IDENTIFICATION OF REMEDIATION STANDARDS

4.1 Soil

The laboratory analysis of soil samples collected during the removal of Tank 009 and the site characterization activities documented concentrations of unleaded gasoline parameters above the Nonresidential Soil-to-Groundwater MSCs (**Table 1**). No concentrations of unleaded gasoline parameters were detected above the PADEP Nonresidential Direct Contact MSCs for subsurface soil (2 to 15 fbg). Volatile organic compounds (VOCs) were not present at a level of concern for vapor intrusion from soil into indoor air.

The recently collected maximum concentrations in soil in the study area are not sufficiently high to cause groundwater impact at a magnitude sufficient to create an impact at the POC; therefore, they represent the recommended site-specific standard (SSS) applicable for soil with no necessity for remediation.

4.2 Groundwater

Dissolved-phase unleaded gasoline parameters were detected in groundwater samples at concentrations greater than the PADEP Nonresidential Used Aquifers MSCs (**Table 4**). VOCs in groundwater are not at a level of concern for vapor intrusion into indoor air.

The POC for attainment of the SHS for groundwater is defined by the PADEP as the property boundary that existed at the time the contamination was discovered. This boundary of concern is the southwest, downgradient boundary essentially at Eden Road, approximately 1,650 feet from Tank 009. The current data from the study area and the fate and transport modeling of groundwater transport show no potential for exceeding the Nonresidential Used Aquifer MSCs for unleaded gasoline parameters at the POC in the foreseeable future. Therefore, the SHS is applicable for groundwater with no necessity for remediation.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are presented based upon the site characterization activities taken to address the release from former Tank 009.

5.1 Conclusions

- The characterization activities addressed a subsurface release of gasoline that was discovered in July 2010 from the area of the former dispenser for Tank 009. A nearby release of gasoline from former UST T-4 was remediated prior to 1991; however, recent groundwater data suggest residual hydrocarbon impact may remain in the subsurface.
- The site characterization was conducted through the installation and sampling of 13 soil borings and 9 monitoring wells; 13 gauging events and 8 days of continuous water level monitoring; and 3 rounds of groundwater samples from MW-118 to MW-121, 2 from MW-122 to MW-125, and 1 from MW-160.
- Detailed geologic analysis and hydraulic conductivity tests were completed to characterized the heterogeneous unconsolidated materials over 67 feet thick. All were of relatively low hydraulic conductivity.
- The release from Tank 009 impacted soils in a relatively small area underneath and to the south and southwest of the former dispenser. Unleaded gasoline parameters were detected in soil samples at concentrations less than the Nonresidential Direct Contact MSC for subsurface soil (2 to 15 fbg) but greater than the Nonresidential Soil-to-Groundwater Used Aquifer MSCs. The current maximum concentrations in soil are not sufficient to impact groundwater at the POC; therefore, they represent the SSSs for soil.
- LNAPL was detected in MW-119 at the former Tank 009 dispenser location in negligible volumes and recovered to the maximum extent practicable. The residuals associated with

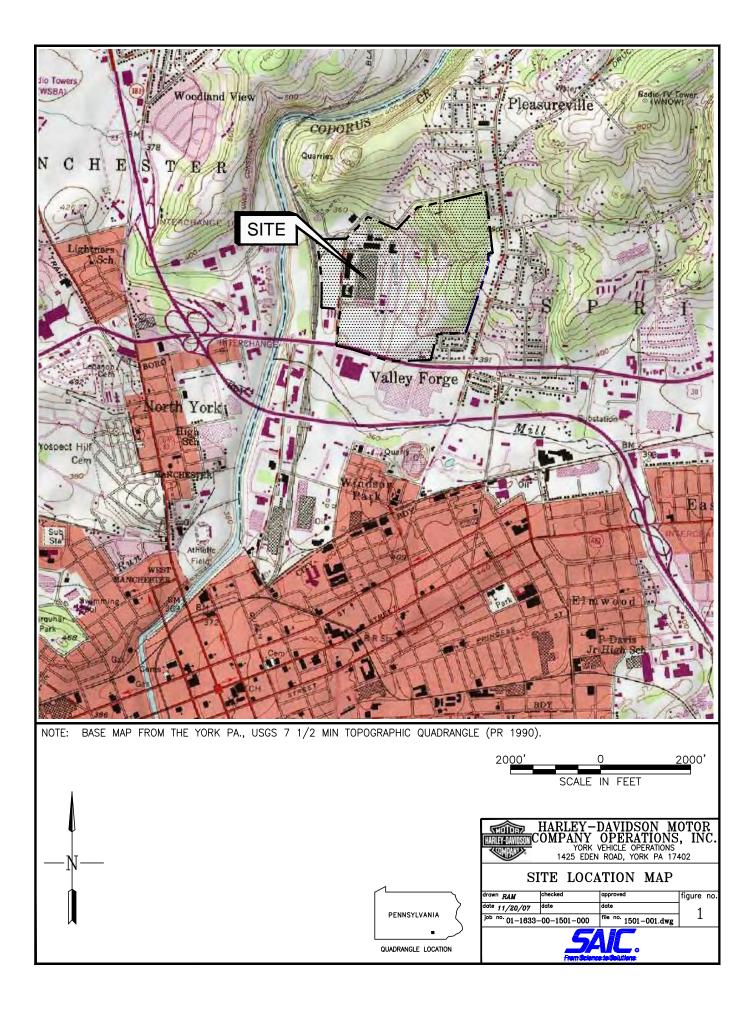
this area represent a source of dissolved-phase impact to groundwater. Another residual source is likely near the former T-4 UST location 35 feet south.

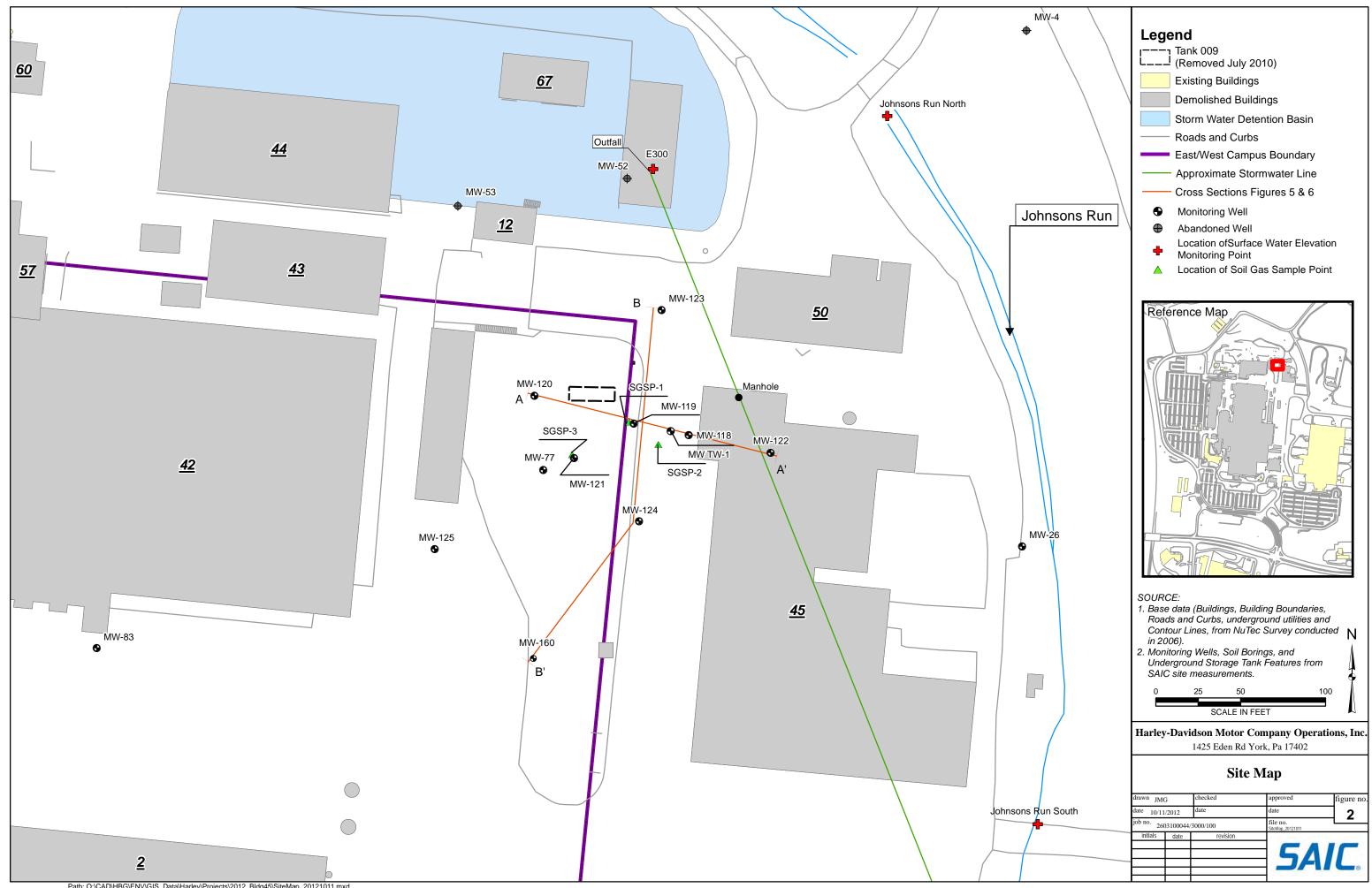
- The magnitude and extent of dissolved-phase unleaded gasoline parameters in shallow groundwater were effectively delineated by sampling and fate-and-transport modeling. The dissolved-phase unleaded gasoline plume has essentially stabilized and has no propensity to migrate to the downgradient POC in 30 years.
- The release does not pose a threat to construction workers by direct contact or public or private water supply wells. A local water use ordinance requires connection to public water; however, the ordinance does not completely eliminate the potential future use of groundwater.
- Further evaluation of the VI pathway in the study area was done, which indicated that none of the soil gas samples detected any target constituent concentrations exceeding a soil gas MSC; therefore, the VI pathway is not a concern.
- The release does not pose a risk to ecological receptors.

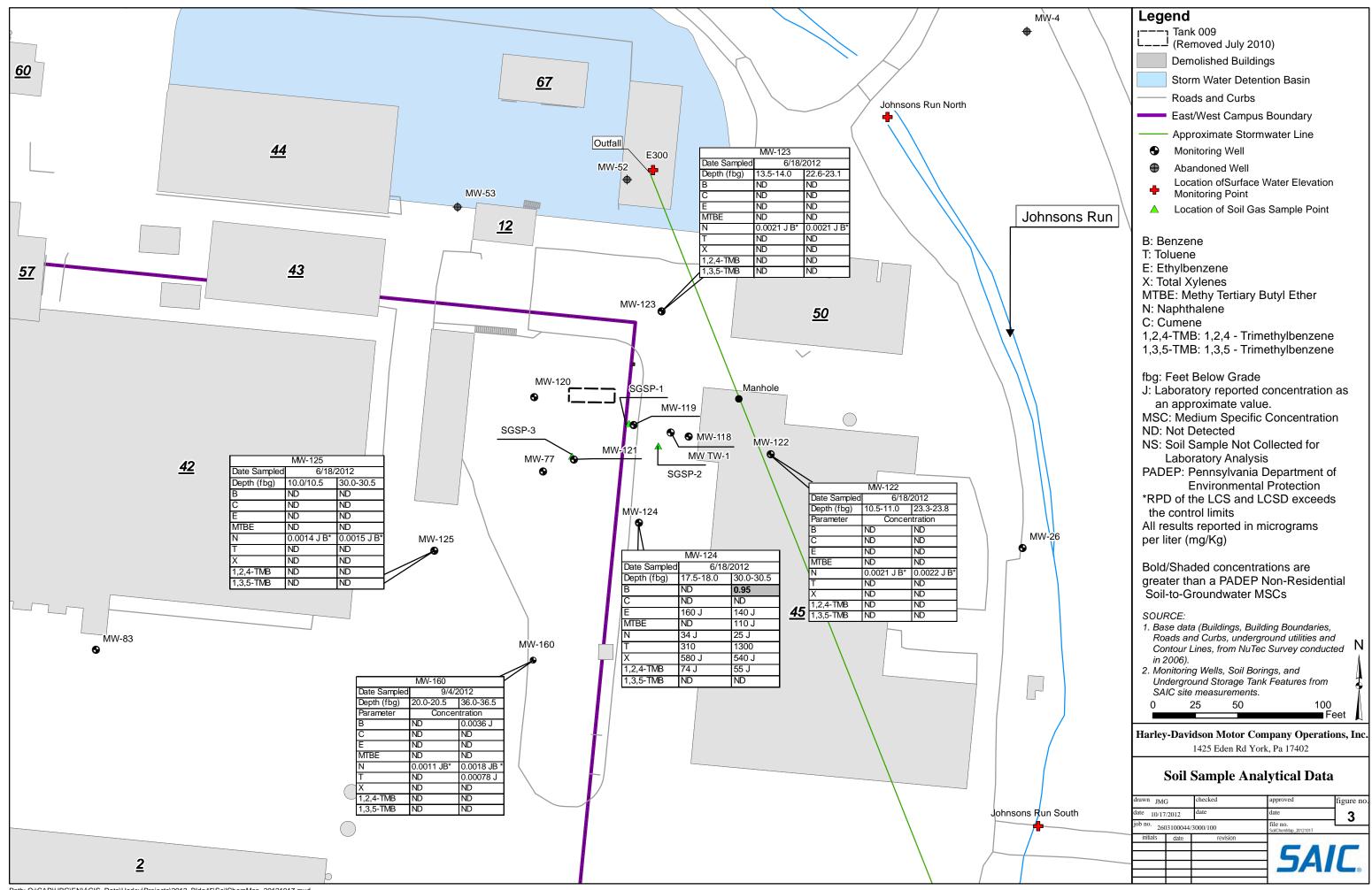
5.2 Recommendations

No additional monitoring wells, subsurface investigation, or active remediation is necessary according to this site characterization, so there are no recommendations.

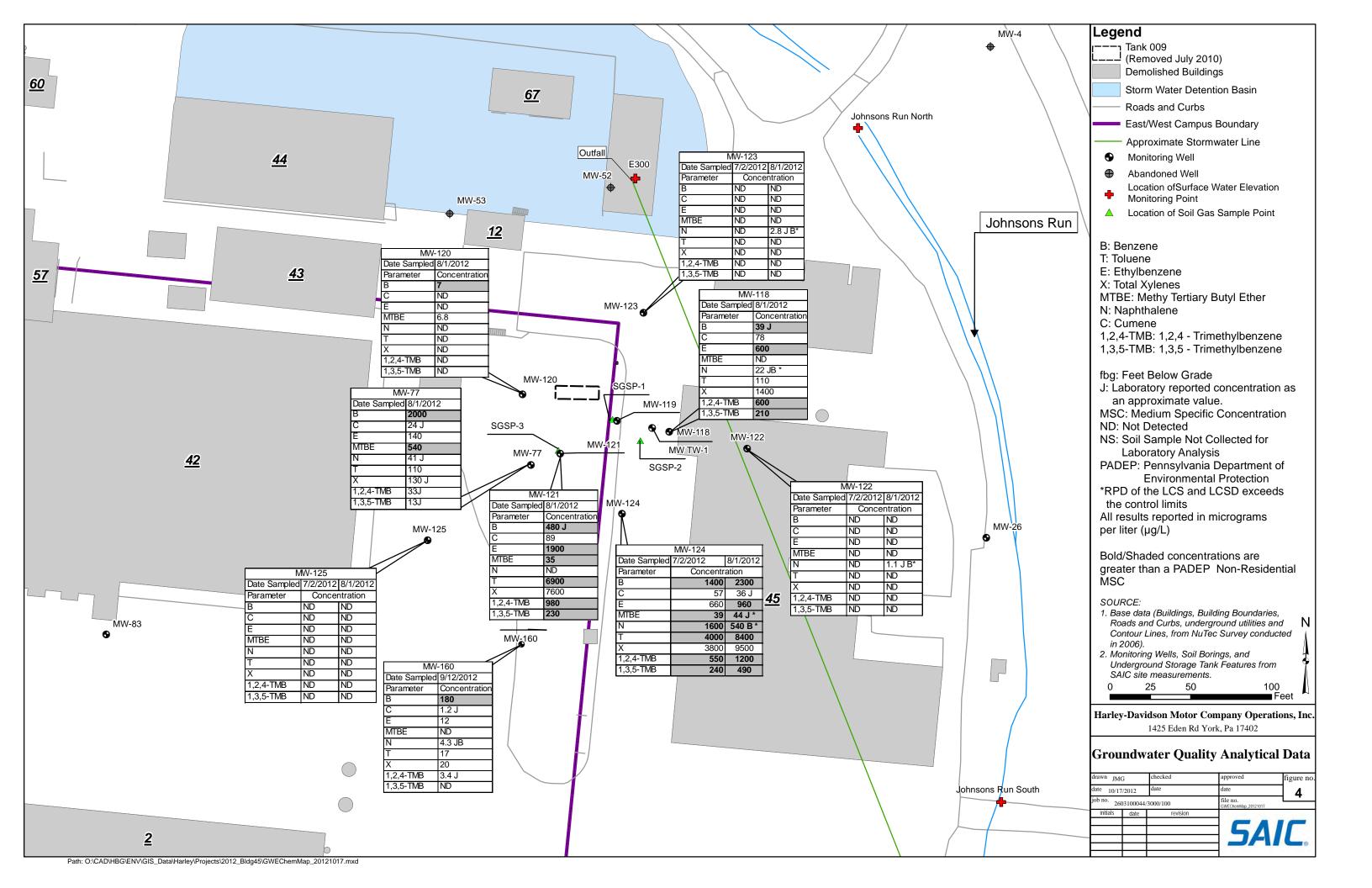
A remedial action plan (RAP) is recommended to be prepared in recognition of the use of the SSS for soil. The RAP should review remedial options, including recommendations for institutional controls, to prevent the use of groundwater where the Nonresidential Used Aquifer MSCs are or will be exceeded in 30 years. Attainment should be sought by quarterly sampling and analysis of the downgradient wells, MW-125 and MW-160, for gasoline target constituents. The choice of MW-125 and MW-160 as monitoring points is in recognition of their being

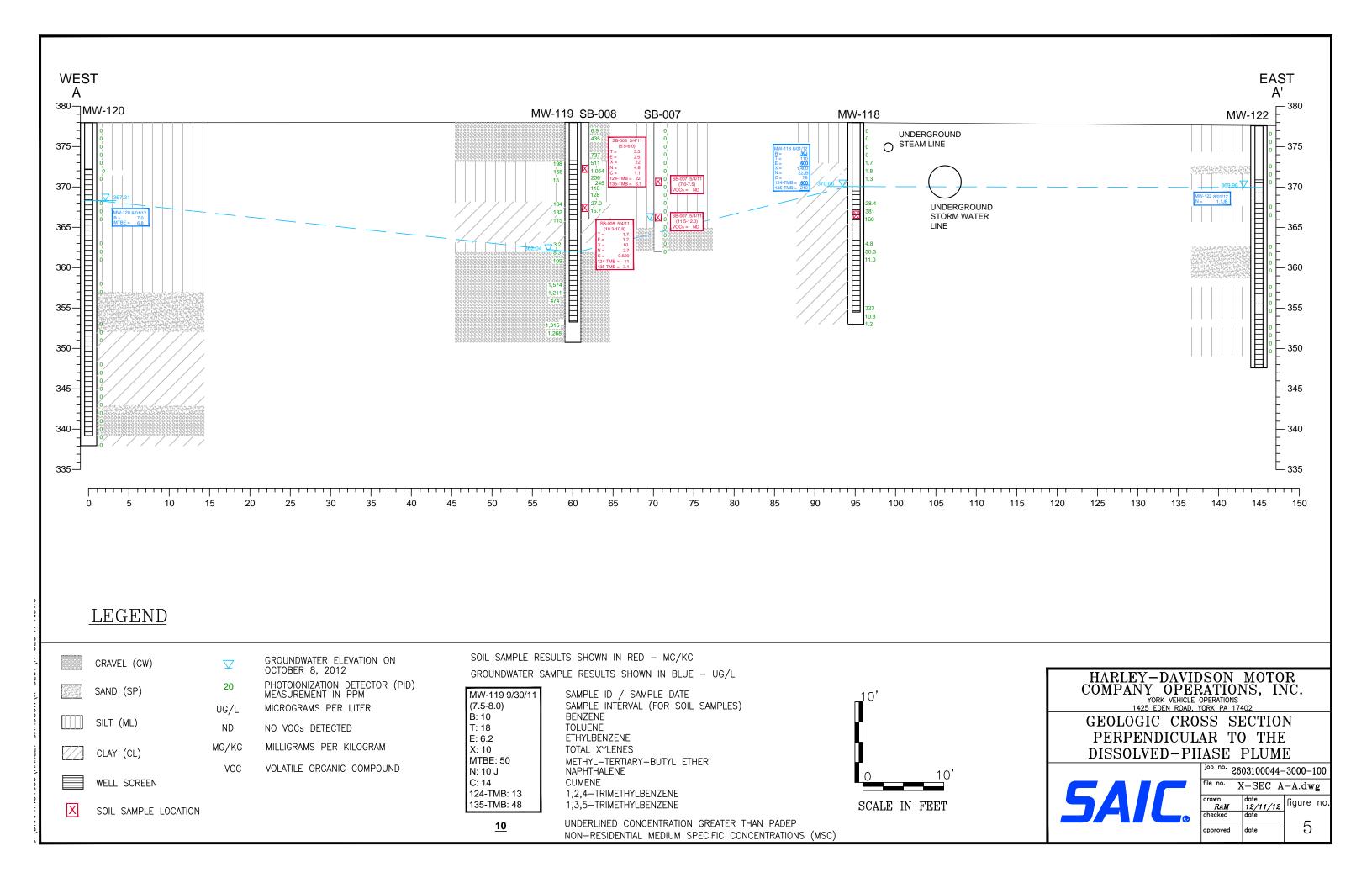

between the source and the POC. These wells would indicate a variance of the plume from the predictions herein.

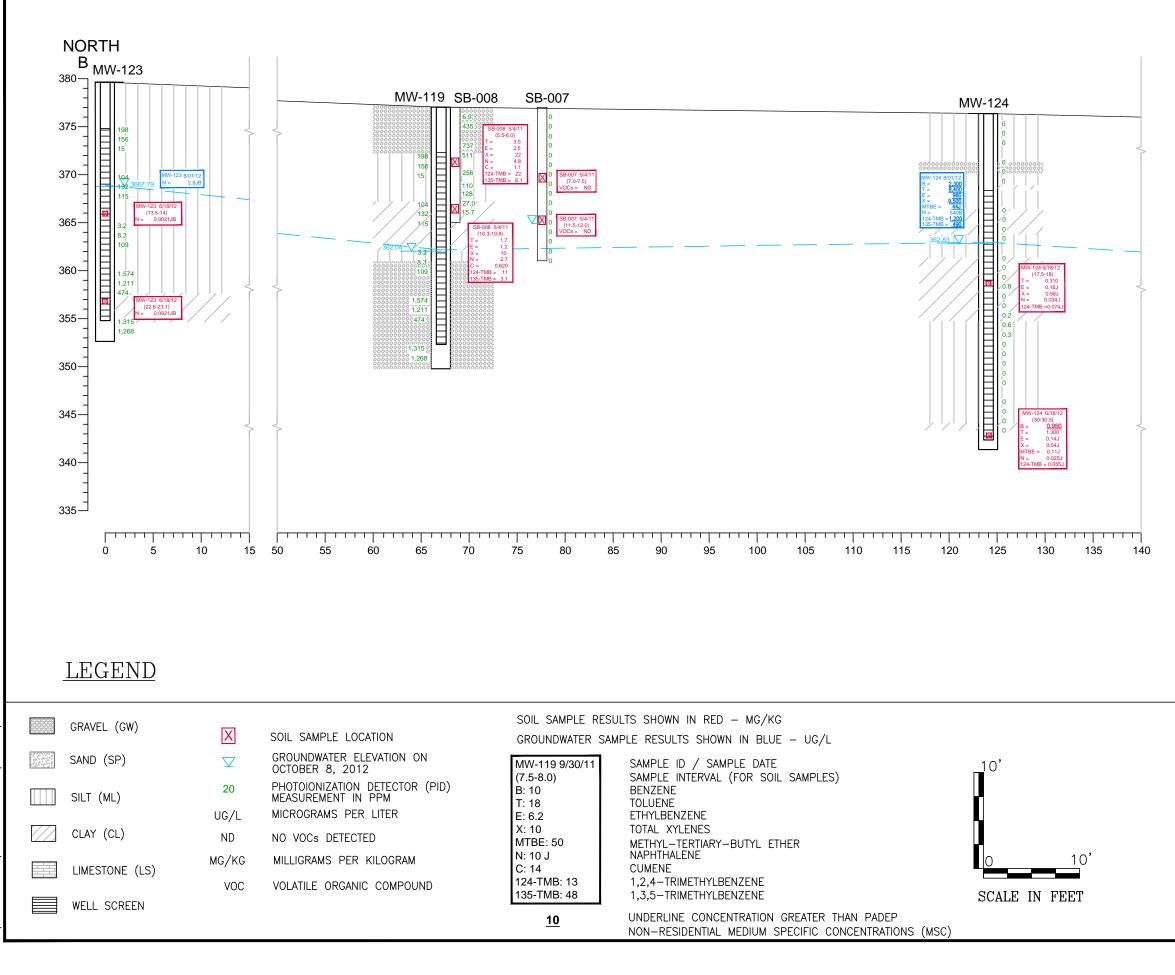

Eight quarters of compliant attainment sampling and a post-remedial care (PRC) plan should be included in a remedial action completion report (RACR) for Tank 009.

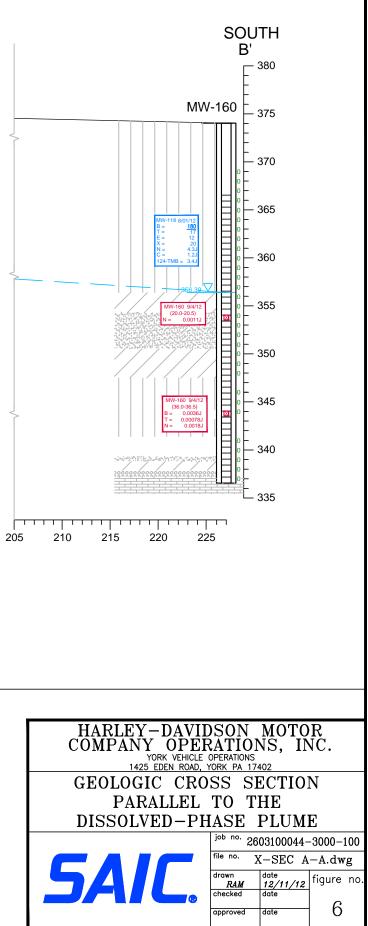

6.0 REFERENCES

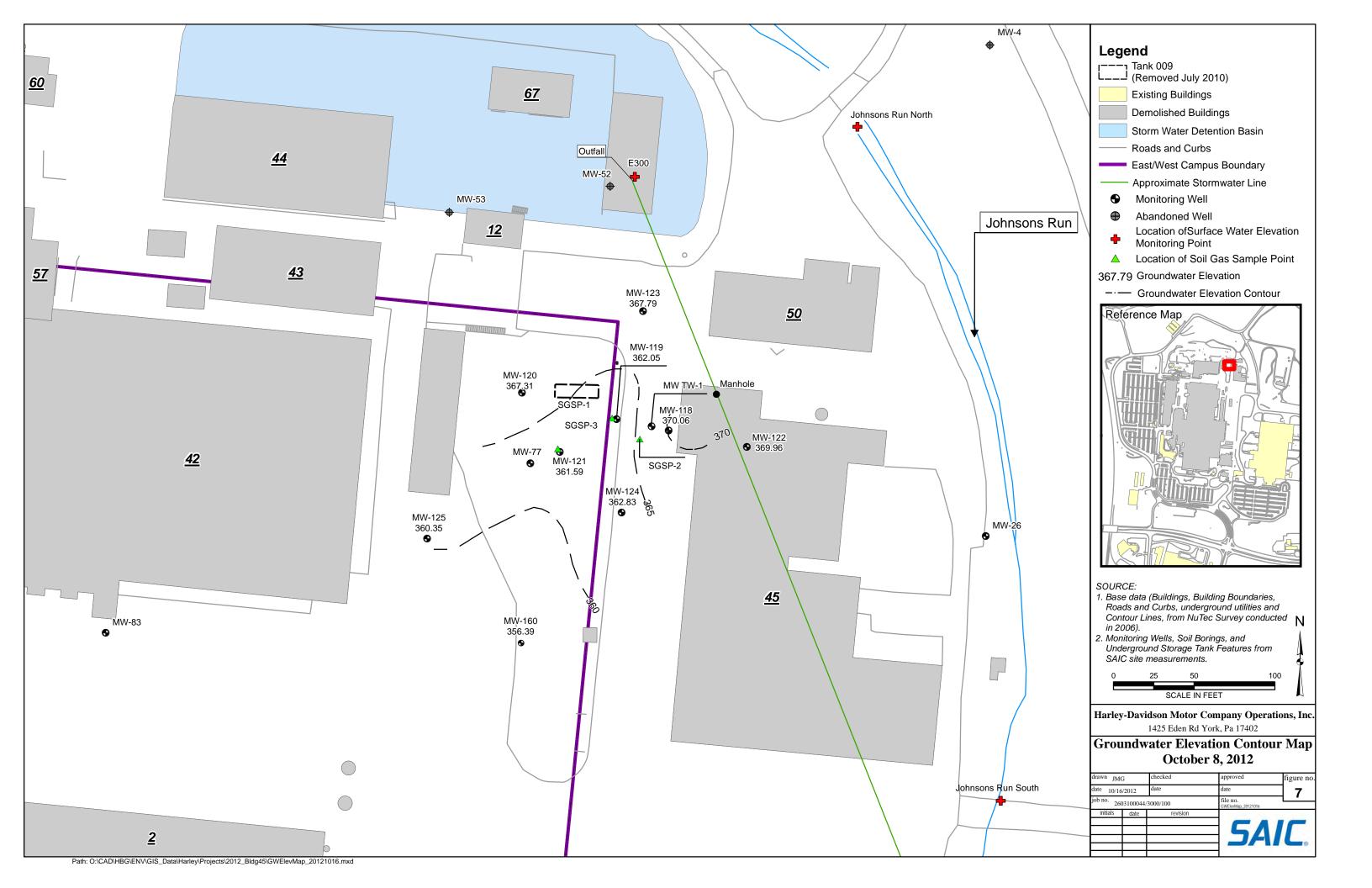
- Groundwater Sciences Corporation (GSC), 2011. Supplemental Remedial Investigation Groundwater Report, September 2011.
- Langan Engineering and Environmental Services, Inc. (Langan), 2004. Well and Surface Water Use Survey Supplemental RI Workplan Harley-Davidson Motor Company Operations, Inc. York, Pennsylvania Facility, March 2004.
- Langan, 2005. Final Well and Surface Water Use Survey Supplemental RI Workplan Harley-Davidson Motor Company Operations, Inc. York, Pennsylvania Facility, December 2005.
- R. E. Wright Associates Inc. (REWAI), 1992. Underground Storage Tank Closure at the Harley-Davidson, Inc. York Facility, March 1992.
- SAIC, 2009. Supplemental Remedial Investigations Soil Report Former York Naval Ordinance Plant, December 2009.
- SAIC, 2010. 2010 Key Well Sampling Report Former York Naval Ordinance Plant, December 2010.
- SAIC, 2011a. UST Closure Report, January 2011.
- SAIC, 2011b. Groundwater Extraction and Treatment System Annual Operations Report for the Period January 1, 2010, Through December 31, 2010, March 2011.
- SAIC, 2012. Site Characterization Report Tank 009 Release, Harley-Davidson Motor Company Operations, Inc., Former York Naval Ordnance Plant, 1425 Eden Road, York, York County, Pennsylvania, January 2012.

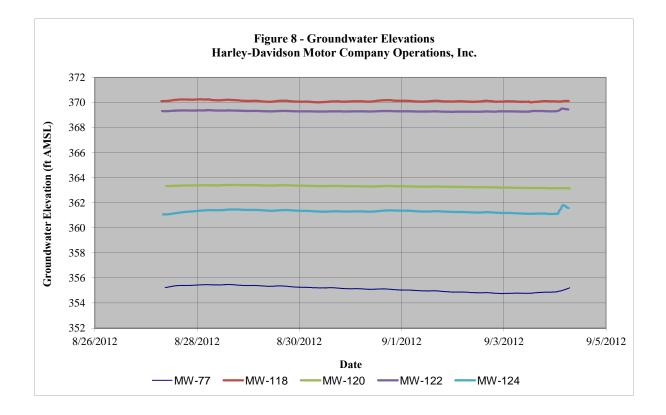

FIGURES

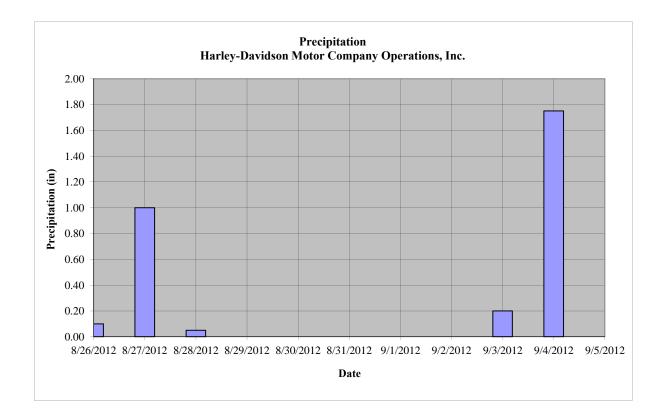


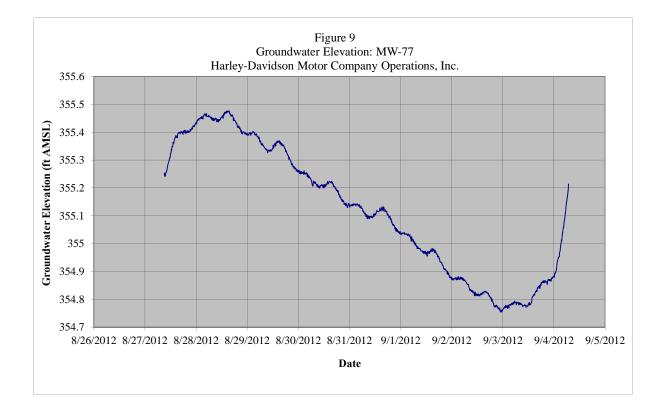


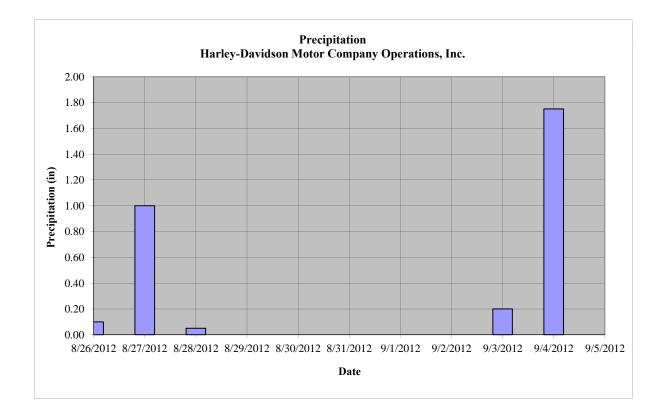


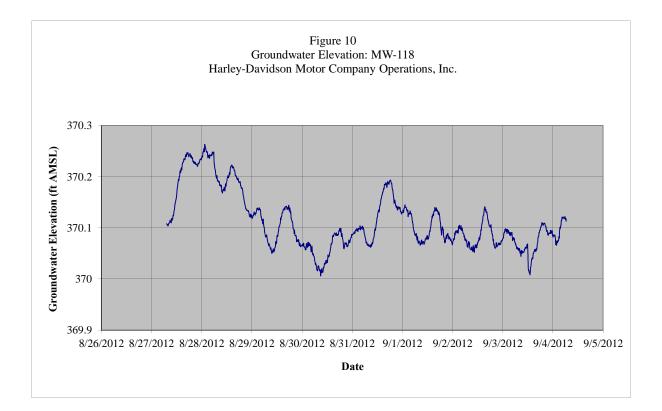

Path: O:\CAD\HBG\ENV\GIS_Data\Harley\Projects\2012_Bldg45\SoilChemMap_20121017.mxd



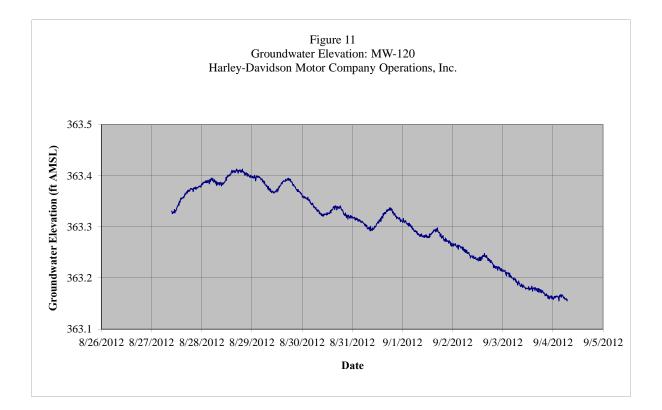


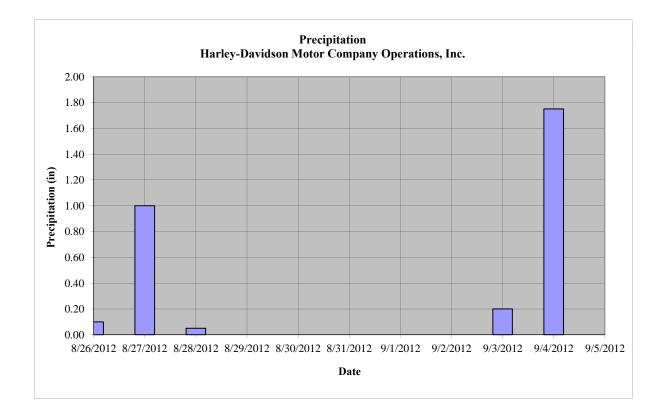


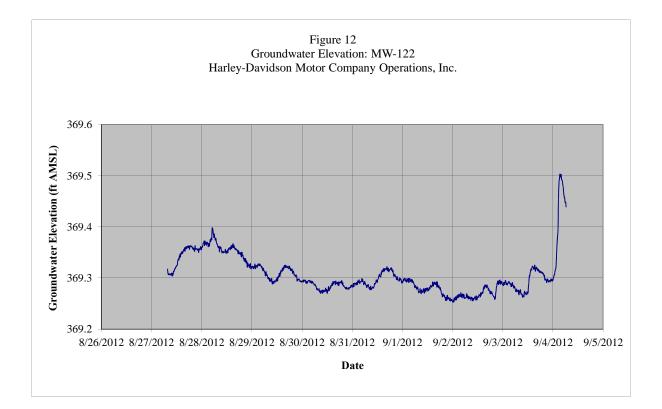


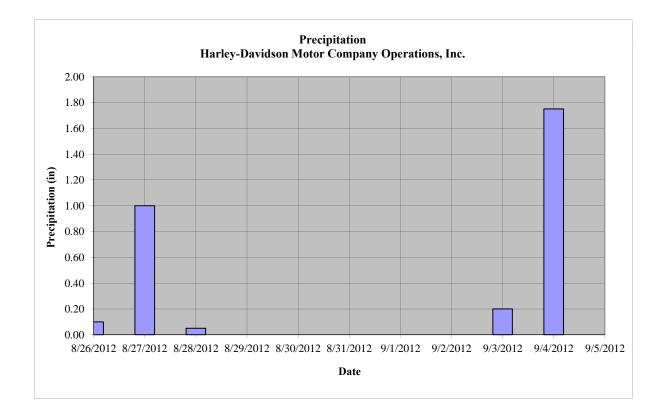


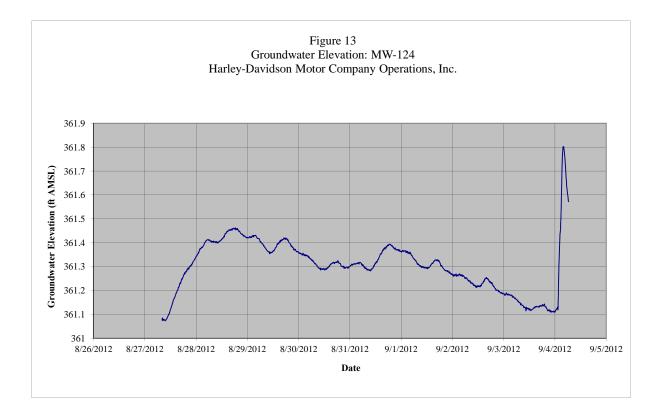


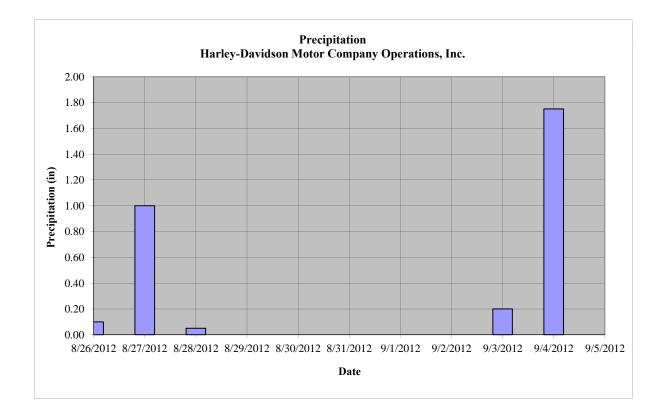












TABLES

Table 1

Soil Sample Analytical Results **Building 45 UST Release Characterization** Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road, York, York County, Pennsylvania PADEP Facility ID No. 67-00823 SAIC Project Number 2603100044-3000-100

						1	1	Ana	lysis Method 8260/	5035		1	
Sample Location	Sample ID	Approximate Sample Depth (feet below grade)	Date Sample Collected	Date Sample Analyzed	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl Tertiary Butyl Ether (MTBE)	Naphthalene	Isopropylbenzene (Cumene)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene
	HD-B45T-MW-122	10.5 - 11	6/18/2012	6/25/2012	< 0.0056	< 0.0056	< 0.0056	< 0.017	< 0.0056	0.0021 JB	< 0.0056	< 0.0056	<0.0056
	HD-B45T-MW-122	23.3 - 23.8	6/18/2012	6/25/2012	<0.0061	< 0.0061	< 0.0061	<0.018	< 0.0061	0.0022 JB	< 0.0061	<0.0061	<0.0061
	HD-B45T-MW-123	13.5 - 14	6/18/2012	6/25/2012	< 0.0051	< 0.0051	< 0.0051	< 0.015	< 0.0051	0.0021 JB	< 0.0051	< 0.0051	<0.0051
	HD-B45T-MW-123	22.6 - 23.1	6/18/2012	6/25/2012	< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	0.0021 JB	< 0.005	< 0.005	<0.005
	HD-B45T-MW-124	17.5 - 18	6/18/2012	6/25/2012	<0.28	0.310	0.16 J	0.58 J	<0.28	0.034 J	<0.28	0.074 J	<0.28
	HD-B45T-MW-124	30 - 30.5	6/18/2012	6/25/2012	0.950	1.300	0.14 J	0.54 J	0.11 J	0.025 J	<0.23	0.055 J	<0.23
	HD-B45T-MW-125	10 - 10.5	6/18/2012	6/25/2012	< 0.0046	< 0.0046	< 0.0046	< 0.014	< 0.0046	0.0014 JB	< 0.0046	< 0.0046	<0.0046
	HD-B45T-MW-125	21.4 - 21.9	6/18/2012	6/25/2012	< 0.0051	< 0.0051	< 0.0051	< 0.015	< 0.0051	0.0015 JB	< 0.0051	< 0.0051	<0.0051
	HD-B45T-MW-160	20.0 - 20.5	9/4/2012	9/7/2012	< 0.0049	< 0.0049	<0.0049	< 0.015	<0.0049	0.0011 J	<0.0049	< 0.0049	<0.0049
	HD-B45T-MW-160	36.0 - 36.5	9/4/2012	9/7/2012	0.0036 J	0.00078 J	< 0.0053	< 0.016	< 0.0053	0.0018 J	< 0.0053	< 0.0053	<0.0053
	PADEP Non-Residential Soi	l-to-Groundwater MSCs			0.5	100	70	1,000	2	25	2,500	35	9.3
	PADEP Non-Residential Direct	Contact MSCs (2 - 15 fe	et)		330	10,000	10,000	9,100	9,900	190,000	10,000	640	550
PADEP De	fault Non-Residential Volatilizatio	n to Indoor Air Screening	g Values for Soil		0.63	110	9.5	77	86	NOC	360+	29	6.4

Notes:

All results reported in milligrams per kilogram (mg/kg)

J - Result is less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) and the concentrations is an approximate value.

MSCs - Medium Specific Concentrations

NA - Sample not analyzed for this compound

NOC - Not of Concern

PADEP - Pennsylvania Department of Environmental Protection

+ - Soil Saturation Concentration (Csat) - concentrations above Csat may suggest the need to investigate the potential presence of non-aqueous phase liquid (LNAPL)

Results that are bold/shaded are greater than PADEP nonresidential MSCs and/or indoor air screening values

			1425	ley-Davidson Motor (5 Eden Road, York, Y PADEP Facility GAIC Project Number	ork County, Pennsy ID No. 67-00823	Ivania			
Location	Monitoring Well Installation Date	TOC Elevation (Feet)	Well Diameter (inches)	Total Drilled Depth (fbg)	Screened Interval (fbg)	Top of Well Screen Elevation (feet)	Date	SWL (fbtoc)	SWL Elevation (fe
							6/27/2012 7/2/2012 7/5/2012	7.50 7.59 7.49	369.94 369.85 369.95
						-	7/10/2012 7/20/2012	7.59	369.85 370.41
MW-118	8/15/2011	377.44	2	25	8 - 23	369.11	7/25/2012	7.62	369.82
MW-110	0/13/2011	577.44	2	25	6-25	507.11	8/1/2012 8/6/2012	7.45	369.99 369.89
							8/17/2012 8/24/2012	7.25	370.19 370.22
							8/30/2012 9/12/2012	7.51 7.50	369.93 369.94
							10/8/2012 6/27/2012	7.38 16.28	370.06 360.75
						-	7/2/2012 7/5/2012	16.75 16.72	360.28 360.31
						-	7/10/2012 7/20/2012	17.33 17.30	359.70 359.73
MW-119	8/17/2011	377.03	2	27	5 - 25	372.20	7/25/2012 8/1/2012	16.84 16.60	360.19 360.43
						-	8/6/2012 8/17/2012	16.67 16.38	360.36 360.65
						-	8/24/2012 8/30/2012	16.65 16.54	360.38 360.49
						-	9/12/2012 10/8/2012	16.43 14.99	360.60 362.04
						-	6/27/2012 7/2/2012	9.43 10.50	368.20 367.13
							7/5/2012 7/10/2012	11.14	366.49 365.41
						-	7/20/2012	13.20	364.43
MW-120	8/17/2011	377.63	2	40	6 - 39	371.30	7/25/2012 8/1/2012	13.29 13.60	364.34 364.03
						-	8/6/2012 8/17/2012	15.73 14.13	361.90 363.50
							8/24/2012 8/30/2012	14.39 14.41	363.24 363.22
							9/12/2012 10/8/2012	14.44 10.32	363.19 367.31
							6/27/2012 7/2/2012	16.61 17.19	359.70 359.12
							7/5/2012 7/10/2012	17.38 17.94	358.93 358.37
							7/20/2012 7/25/2012	15.63	360.68
MW-121	8/18/2011	376.31	2	36	7 - 35	369.08	8/1/2012 8/6/2012	17.47	358.84
						-	8/17/2012	17.17	359.14
						-	8/24/2012 8/30/2012	17.50	358.81
							9/12/2012 10/8/2012	17.07	359.24 361.59
						-	6/27/2012 7/2/2012 7/5/2012	8.98 8.93 8.90	368.63 368.68 368.71
							7/10/2012 7/20/2012	8.93	368.68
MW-122	6/20/2012	377.61	2	30	7 - 30	370.61	7/25/2012 8/1/2012	8.78	368.83
MW-122	0/20/2012	577.01	2	50	7-50	570.01	8/6/2012	8.43	369.18
						-	8/17/2012 8/24/2012	8.34 8.40	369.27 369.21
						-	8/30/2012 9/12/2012	8.36 8.30	369.25 369.31
							10/8/2012 6/27/2012	7.65	369.96 367.46
						-	7/2/2012 7/5/2012	12.37 12.33	367.27 367.31
						-	7/10/2012 7/20/2012	12.54 12.53	367.10 367.11
MW-123	6/20/2012	379.64	2	30	7 - 30	372.64	7/25/2012 8/1/2012	12.55 12.37	367.09 367.27
							8/6/2012 8/17/2012	12.44	367.20 367.36
						-	8/24/2012 8/30/2012	12.46 12.47	367.18 367.17
						-	9/12/2012 10/8/2012	12.47	367.17 367.79
							6/27/2012 7/2/2012	14.87	361.50 360.87
						-	7/5/2012 7/10/2012	15.56	360.81 360.16
						-	7/20/2012 7/25/2012	16.31	360.06 360.58
MW-124	6/21/2012	376.37	2	34	8 - 34	368.37	8/1/2012 8/6/2012	15.66	360.71 360.69
						-	8/17/2012 8/24/2012	14.94 15.29	361.43 361.08
							8/30/2012 9/12/2012	15.14 14.94	361.23 361.43
						-	10/8/2012 6/27/2012	13.54 11.37	362.83 355.19
						-	7/2/2012 7/5/2012	11.59 11.89	354.97 354.67
							7/10/2012 7/20/2012	12.32	354.24
MW-125	6/21/2012	366.56	2	24	4 - 24	362.56	7/25/2012 7/25/2012 8/1/2012	11.31 11.31 10.78	355.25 355.78
			-				8/6/2012	10.21	356.35
							8/17/2012 8/24/2012	10.58	355.98 355.42
							8/30/2012 9/12/2012	10.86 NM	355.70 NM
MW-160	9/4/2012	374.04	2	38	7.5 - 37.5	366.54	10/8/2012 9/12/2012	6.21 19.04	360.35 355.00
							10/8/2012 6/27/2012	17.65 25.02	356.39 354.42
						-	7/2/2012 7/5/2012	25.32 25.56	354.12 353.88
							7/10/2012 7/20/2012 7/25/2012	26.04 25.11	353.40 354.33
MW-26	5/20/1987	379.44	2	62	11 - 61	368.44	7/25/2012 8/1/2012	25.31 24.68	354.13 354.76
							8/6/2012 8/17/2012	24.28 24.25	355.16 355.19
							8/24/2012 8/30/2012	24.86 24.71	354.58 354.73
							9/12/2012 10/8/2012	NM 23.68	NM 355.76
							6/27/2012 7/2/2012	24.29 24.72	355.19 354.76
						-	7/5/2012 7/10/2012	24.93 25.42	354.55 354.06
							7/20/2012 7/25/2012	24.96 24.83	354.52 354.65
MW-77	6/10/1998	379.48	2	67	40 - 65	339.48	8/1/2012 8/6/2012	24.35 24.13	355.13 355.35
							8/17/2012 8/24/2012	24.15 24.53	355.33 354.95
							8/30/2012 9/12/2012	24.40 24.20	355.08
						-	10/8/2012 Minimum*	23.04	356.44 354.95
						·	Maximum* Average*	24.53	370.22 361.55
								10.02	201.22

Table 3MW-119 Product Recovery DataBuilding 45 UST Release CharacterizationHarley-Davidson Motor Company Operations, Inc.1425 Eden Road, York, York County, PennsylvaniaPADEP Facility ID No. 67-00823SAIC Project Number 2603100044-3000-100

						AIC I Ioject Nullio	.1 2003100047	-5000-100					
Location	Monitoring Well Installation Date		Well Diameter (inches)	Total Drilled Depth (fbg)	Screened Interval (fbg)	Top of Well Screen Elevation (feet)	Date	Depth to Product (fbtoc)	SWL (fbtoc)	Product Thickness (ft)	Volume Recovered (ml)	SWL Elevation (feet)	Adjusted SWL Elevation (feet)
							6/27/2012	16.06	16.28	0.22	140	360.75	360.90
							7/2/2012	16.53	16.75	0.22	140	360.28	360.43
							7/5/2012	16.61	16.72	0.11	70	360.31	360.39
							7/10/2012	17.10	17.33	0.23	140	359.70	359.86
	7/20/2012 17.08	17.08	17.30	0.22	140	359.73	359.88						
							7/25/2012	16.77	16.84	0.07	40	360.19	360.24
MW-119	8/17/2011	377.03	2	27	5 - 25	372.20	8/1/2012	16.58	16.60	0.02	NA	360.43	360.44
							8/6/2012	16.65	16.67	0.02	NA	360.36	360.37
							8/17/2012	16.36	16.38	0.02	NA	360.65	360.66
							8/24/2012	16.63	16.65	0.02	NA	360.38	360.39
							8/30/2012	16.52	16.54	0.02	NA	360.49	360.50
							9/12/2012	16.40	16.43	0.03	NA	360.60	360.62
							10/8/2012	14.97	14.99	0.02	NA	362.04	362.05

Table 4 Groundwater Sample Analytical Results **Building 45 UST Release Characterization** Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road, York, York County, Pennsylvania PADEP Facility ID No. 67-00823 SAIC Project Number 2603100044-3000-100

					n			Analysis Method 8260	3		•	
Sample Location	Sample ID	Date Sample Collected	Date Sample Analyzed	Benzene	Toluene	Ethylbenzene	Total Xylenes	Methyl Tertiary Butyl Ether (MTBE)	Naphthalene	lsopropylbenzene (Cumene)	1,2,4-Trimethylbenzene	1,3,5-1 rimethylbenzene
MW-77	HD-MW-77-01-0	6/24/2011	7/7/2011	1,500	56	80	74 J	520	NA	NA	NA	NA
	HD-MW-77-01-0	8/1/2012	8/7/2012	2,000	110	140	130 J	540	41 J	24 J	33 J	13 J
	HD-MW-118-01-0	8/25/2011	9/9/2011	120 H	560 H	630 H	1,900 H	<50 H	42 J H	130 H	460 H	130 H
MW-118	HD-MW-118-01-0	9/30/2011	10/11/2011	120	520	1,000	2,800	<100	130	88 J	790	250
	HD-MW-118-01-0	8/1/2012	8/15/2012	39 J	110	600	1,400	<50	22 JB	78	600	210
	HD-MW-119-01-0	8/25/2011	9/9/2011	6,100 H	6,300 H	510 J H	1,900 H	<630 H	280 J H	<630 H	170 J H	<630 H
MW-119	HD-MW-119-01-0	9/30/2011	10/11/2011	11,000	18,000	2,600	10,000	<500	240 J	<500	1,300	480 J
	HD-MW-119-01-0	8/1/2012	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP	NS/FP
	HD-MW-120-01-0	8/25/2011	9/7/2011	2.2 J	0.94 J	<5.0	<15.0	14.0	<5.0	<5.0	<5.0	<5.0
MW-120	HD-MW-120-01-0	9/30/2011	10/11/2011	<5.0	<5.0	<5.0	<15.0	1.1 J	<5.0	<5.0	<5.0	<5.0
	HD-MW-120-01-0	8/1/2012	8/6/2012	7.0	<5.0	<5.0	<15.0	6.8	<5.0	<5.0	<5.0	<5.0
	HD-MW-121-01-0	8/25/2011	9/8/2011	390	3,700 E	990	3,600	45 J	26 J	120	430	120
MW-121	HD-MW-121-01-0	9/30/2011	10/11/2011	430	4,900	1,000	3,700	56 J	<250	45 J	330	140 J
	HD-MW-121-01-0	8/1/2012	8/7/2012	480 J	6,900	1,900	7,600	35	<500	89	980	230
MW-122	HD-MW-122-01-0	7/2/2012	7/6/2012	<5.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0
IVI W -122	HD-MW-122-01-0	8/1/2012	8/15/2012	<5.0	<5.0	<5.0	<15.0	<5.0	1.1 JB	<5.0	<5.0	<5.0
MW-123	HD-MW-123-01-0	7/2/2012	7/6/2012	<5.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0
WIW-125	HD-MW-123-01-0	8/1/2012	8/15/2012	<5.0	<5.0	<5.0	<15.0	<5.0	2.8 JB	<5.0	<5.0	<5.0
MW-124	HD-MW-124-01-0	7/2/2012	7/6/2012	1,400	4,000	660	3,800	39	1,600	57	550	240
WIW-124	HD-MW-124-01-0	8/1/2012	8/15/2012	2,300	8,400	960	9,500	44 J	540 B	36 J	1,200	490
NW 125	HD-MW-125-01-0	7/2/2012	7/6/2012	<5.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-125	HD-MW-125-01-0	8/1/2012	8/6/2012	<5.0	<5.0	<5.0	<15.0	<5.0	<5.0	<5.0	<5.0	<5.0
NW 160	HD-MW-160-01-0	9/12/2012	9/21/2012	180	17	12	20	<5.0	4.3 J	1.2 J	3.4 J	<5.0
MW-160												
PAD	EP Non-Residential Groundw		5	1,000	700	10,000	20	100	3,500	62	53	
PADEP Default Non Residen	ial Volatilization to Indoor Ai	r Screening Values for (roundwater	5,900	NOC	45,000	NOC	640,000	NOC	NOC	12.000	10,000

Notes:

All results reported in micrograms per liter ($\mu g/L$) E - Result exceeded calibration range

H - Sample was prepped or analyzed beyond the specified holding time

J - Result is less than the reporting limit (RL) but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value NS/FP - Not Sampled, Free Product observed.

MSCs - Medium Specific Concentrations

NOC - Not of concern, value above constituent water solubility

PADEP - Pennsylvania Department of Environmental Protection

QA/QC - Quality Assurance/Quality Control

Results that are bold/shaded are greater than PADEP nonresidential MSCs and/or indoor air screening values

					Building 45 U arley-Davidson 425 Eden Road, PADEP		rracterization y Operations, Ind nty, Pennsylvani 67-00823						
Sample Location	Sample ID	Approximate Sample Depth (feet below grade)	Date Sample Collected	Total Organic Carbon (mg/kg)	Percent Solids	In Place Density (g/cc)	Specific Gravity @ 20 Degrees Celsius	Percent Porosity	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Unified Soil Classification System (USCS) Group Symbol/Name
MW-118	HD-B45T-118-17.0/19.0-0	17.0 - 19.0	8/15/2011	1,410	81.0	1.77	2.69	34.1	11.6	27.7	35.9	24.8	CL - Lean Clay
MW-121	HD-B45T-121-33.0/34.7-0	33.0 - 34.7	8/17/2011	1,850	83.5	1.94	2.70	28.2	29.2	40.5	16.1	14.2	SC - Clayey Sand with Gravel
Notes: Milligrams per kilogram (mg/kg)													

g/cc - grams per cubic centimeter

	TABL Summary of Slug Building 45 UST Relea Harley-Davidson Motor Co 1425 Eden Road, York, You PADEP Facility II SAIC Project Number 2	g Test Results se Characterization ompany Operations, Inc. ok County, Pennsylvania D No. 67-00823	
Well		Hydraulic C	Conductivity
Location		$(\mathbf{gpd/ft}^2)$	(ft/day)
	Test1 Rising Head	1.1	0.1
MW-118	Test2 Rising Head	3.0	0.4
	MW-118 Mean	2.1	0.3
	Test1 Rising Head	0.1	0.01
MW-121	Test2 Rising Head	0.1	0.01
	MW-121 Mean	0.1	0.01
		10.0	
	Test1 Rising Head	12.2	1.6
MW-122	Test2 Rising Head	91.7	12.3
	MW-122 Mean	52.0	6.9
	Test1 Rising Head	0.1	0.01
MW-124	Test2 Rising Head	0.1	0.01
101 00 - 124	MW-124 Mean	0.1	0.01
			0.01
		13.5	1.8

Notes:

gpd/ft² - gallons per day per square foot

gpd/ft² was converted to ft/day using a 0.134 multiplier

Table 7

Soil Gas Sample Analytical Data Building 45 UST Release Characterization Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road, York, York County, Pennsylvania PADEP Facility ID No. 67-00823 SAIC Project Number 2603100044-3000-100

				PAD	DEP Short List of Po	etroleum Products	(Unleaded Gasoli	ne Parameters) Via	USEPA Method T	0-15	1
Sample ID	Date Sampled	Date Analyzed	Benzene	Ethylbenzene	Isopropylbenzene (Cumene)	Methyl Tertiary Butyl Ether (MTBE)	Naphthalene	Toluene	Total Xylenes	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene
SGSP-1	8/15/2012	8/17/2012	0.76 J	7.5	1.6 J	<14	7.3 J	13	54	37	7.9
3031-1	9/12/2012	9/13/2012	2.4 J	9.0	1.8 J	<14	<10	9.1	44	2.8 J	1.4
SGSP-2	8/15/2012	8/17/2012	0.84 J	<3.5	<7.9	<14	<10	2.1 J	<3.5	<3.9	<3.
505F-2	9/12/2012	9/14/2012	2.4 J	1.5 J	<7.9	<14	<10	5.7	6.6 J	<3.9	<3.
SGSP-3	8/15/2012	8/17/2012	<2.6	<3.5	<7.9	<14	<10	0.97 J	<3.5	<3.9	<3.
5-1606	9/12/2012	9/13/2012	<2.6	<3.5	<7.9	<14	<10	0.98 J	<3.5	1.9 J	<3.
Ambiant Air	8/15/2012	8/17/2012	0.28	0.14 J	< 0.79	<1.4	0.26 J	0.63	0.96 J	0.37 J	<0.3
Ambient Air	9/12/2012	9/13/2012	0.45	0.28 J	< 0.79	<1.4	<1.0	1.7	1.2 J	0.32 J	< 0.3
PADEP Non	esidential MSC for So	oil Gas	1,100	7,300	110,000	31,000	880	120,000	30,000	1,700	1,

Notes:

All results reported in micrograms per cubic meter (μ g/m3)

Concentrations that are bold were detected.

Concentrations that are bold and shaded were greater than the PADEP residential MSC for Soil Gas

USEPA - United States Environmental Protection Agency

PADEP - Pennsylvania Department of Environmental Protection

MSCs - Medium Specific Concentrations

MSCs for soil gas were derived in accordance with the Land Recycling Program Technical Guidance Manual - Section IV.A.4 Vapor Intrusion into Buildings from Groundwater and Soil under the Act 2 Statewide Health Standard, dated November 2004.

< - Indicates the parameter was not detected in the sample

APPENDIX A

Well Construction Logs

	Former Building 45	· York I 5 UST I	Naval Ordnance Plant Release Characterization n Road, York, PA	Drilling Com Logged By Drilling Meth		:	Matthew	erger's In v J. Logar Stem Aug	ı	Drilling Comp Well Construe Well Develop	ction : 8/15/	2011 2011
			2603100044/2000/100	Drilling Bit D Drilling Start	iamete	er :	8 1/4" C 8/15/20).D.	-			
Depth in Feet	Recovery	Blow Count	DESCRIPTIC	N	USCS	GRAPHIC	PID (ppm) - bkgd = 0.0	-	MW-118 377.44:			nstruction mation
0— - - -	NA		ML - Asphalt and sub-base followed by SILT, brownish (10YR 6/6), dry.		ML		0.0 0.0 0.0 0.0		- Concrete - Bentonite	•		
5-	2.0'/2.0'	5 5 7 8	CL - CLAY, light yellowish (10YR 6/4), dry, soft, medi plasticity.	brown um	CL		1.7 1.8 1.3		Cubing		From Joints WELL SCREEN	: 0' to 8.33' BPVC : Flush Threaded
- - 10-			Auger 7'-10' to next sampli interval.	ng			28.4				Material Diameter From Joints Opening	: Sch 40 PVC : 2" : 8.33' to 23.33' E : Flush Threaded : 0.010 slot
-	1.8'/2.0'	4 5 10 9	CL - CLAY, yellow (10YR 7 soft, low plasticity. CL - CLAY with quartz frag yellow (10YR 7/8), dry, sof plasticity.	ments,	CL CL		381				ADDITIONAL CC DETAILS #0 Morie Sand, 1 Bentonite hole pl bag	
- 15—	2.0'/2.0'	2 3 3	No recovery. Auger 12'-15' to next samp interval. CL - CLAY with limestone fragments, yellow (10YR 7		CL		4.8			:	Flush Mount Surf Soil Sample HD-B45T-MW-11 collected from 11	8-11.0/12.0-0 .0' to 12.0' BGS.
-		3	soft, low plasticity. Auger 17'-20' to next samp interval. Shelby Tube Sample 17.0'	-			11.0		Screen — Sand		Sample analyzed Unleaded Gasolin TestAmerica Pitts Soil Sample HD-B45T-MW-11	ne Short List by sburgh.
20— - -	0.0'/2.0'	9 7 6 7	BGS. No recovery. Auger 22'-23' to next samp	ling							collected from 17 Sample analyzed specific gravity, d size, total organic percent moisture Burlington.	.0' to 19.0' BGS. for porosity, ensity, particle c carbon and
-	2.0'/2.0'	3 6 7 8	interval. CL - CLAY with limestone fragments, yellow (10YR 7 soft, low plasticity. End of boring at 25' BGS.		CL		323 10.8 <u>1.2</u>		Slip Cap		Static water level September 30, 20 BGS-below grour BPVC-below top	011. nd surface

												(Page 1	of 1)
	Building 45 142	5 UST 25 Ede	Naval Ordnance Plant Release Characterization n Road, York, PA 2603100044/2000/100	Drilling Com Logged By Drilling Meth Drilling Bit D Drilling Start	nod Viamete	: : er :	Eichelbe Matthew Hollow \$ 8 1/4" C 8/16/20 ⁻	v J. L Stem).D.	ogan		Drilling Corr Well Constr Well Develo	uction : 8/17/	2011
Depth in Feet	Recovery	Blow Count	DESCRIPTIC	N	USCS	GRAPHIC	PID (ppm) - bkgd = 0.0			/W-119 77.03: — Cover			onstruction mation
0— - - -	NA		GP - GRAVEL with SAND, grained, angular gravel, fin sand, gray (2.5Y 5/1), loos	e grained	GP					Concrete Bentonite		Driller WELL CASING Material	: 8/17/2011 : 4 1/4" : Hollow Stem Au : Eichelberger's : : Sch 40 PVC
5— - -	2.0'/2.0'	3 8 6 9	ML - SILT with quartz grav brownish yellow (10YR 6/6 firm. Auger 7'-10' to next sampli interval.), dry,	ML		198 156 15.0					Diameter From Joints WELL SCREEN Material Diameter From Joints	: 2" : 0' to 4.83' BPV0 : Flush Threadec : Sch 40 PVC : 2" : 4.83' to 24.83' E : Flush Threadec
- 10- -	• 2.0'/2.0'	3 6 8	CL - CLAY, yellow (10YR 7 firm. CL - CLAY with quartz gra	vel,	CL CL		104 132 115					Opening ADDITIONAL CO DETAILS #0 Morie Sand, 1	: 0.010 slot
- - 15 - -	2.0'/2.0'	4 4 7 11	yellow (10YR 7/8), dry, mo plasticity. Auger 12'-15' to next samp interval. ML - SILT, pale yellow (5Y moist, soft. GW - WELL GRADED QU GRAVEL, fine to coarse gr angular with well graded sa to coarse grained, angular.	/ling 7/3), ARTZ ained, and, fine	ML GW		3.2 8.3 109			— Sand — Screen		bag Flush Mount Sur BGS-below grou BPVC-below top	nd surface of PVC were collected for
- 20— -	2.0'/2.0'	5 6 11 11	dense. Auger 17'-20' to next samp interval. GW - WELL GRADED QU GRAVEL, fine to coarse gr angular with well graded sa to coarse grained, angular.	ling ARTZ ained, and, fine	GW		1,574 1,211 474					Static water level September 30, 2	
- - 25— -	2.0'/2.0'	5 9 11 14	dense. Auger 22'-25' to next samp interval. GW - WELL GRADED QU GRAVEL, fine to coarse gr angular with well graded sa to coarse grained, angular.	ling ARTZ ained, and, fine	GW		1,315 1,268			— Slip Cap			

	5					V	WELL	CONST	RUCTION	I LOG O	F MW-120	
			R R								(Page 1	
	Building 45 142	5 UST 25 Ede	Naval Ordnance Plant Release Characterization In Road, York, PA 2603100044/2000/100	Drilling Com Logged By Drilling Meth Drilling Bit D Drilling Start	od iamete	: : er :	Matthew Hollow 8 1/4" C 8/16/20		r	Drilling Con Well Constr Well Develo	ruction : 8/17/	/2011
Depth in Feet	Recovery	Blow Count	DESCRIPTIC)N	NSCS	GRAPHIC	PID (ppm) - bkgd = 0.0	-	MW-120 77.63: ← Cover			onstruction rmation
0	NA		ML - SILT, brownish yellov 6/6), dry, with well graded fine to coarse grained, ang	gravel,	ML		0.0		- Concrete - Bentonite - Casing		WELL CONSTR Date Completed Auger I.D. Drilling Method Driller WELL CASING Material Diameter From Joints WELL SCREEN	: 8/17/2011 : 4 1/4" : Hollow Stem Aug : Eichelberger's : : : Sch 40 PVC : 2" : 0' to 6.33' BPVC : Flush Threaded
5	2.0'/2.0'	5 6 7 8	ML - SILT, brownish yellov 6/6), dry, with well graded fine to coarse grained, ang Auger 7'-10' to next sampli interval.	gravel, ular.	ML		0.0				Material Diameter From Joints Opening ADDITIONAL CO DETAILS #0 Morie Sand, 2	: Sch 40 PVC : 2" : 6.33' to 39.33' BF : Flush Threaded : 0.010 slot
10- - -	2.0'/2.0'	2 3 2 2	ML - SILT, dark gray (5Y 6 fine grained sand, moist, v Auger 12'-15' to next samp interval.	ery soft.	ML		0.0				bag Flush Mount Sur BGS-below grou BPVC-below top	nd surface of PVC were collected for
- 15- -	2.0'/2.0'	2 3 5 7	ML - SILT, dark gray (5Y 6 fine grained sand, moist, v ML - SILT, gray (5Y 6/1), n Auger 17'-20' to next samp interval.	ery soft. noist, firm.	ML ML		- 0.0 - 0.0 - 0.0		Screen		Static water leve September 30, 2	l collected on
- - 20-	2.0'/2.0'	4 7 6 12	ML - SILT, gray (5Y 6/1), n SP - POORLY GRADED S GRAVEL, fine grained san grained, angular quartz gra moist, loose.	AND WITH d, coarse	ML SP		0.0					

		F				•		CONSTRUCTIO		
	Former Building 45 142	York N UST I 25 Ede	Naval Ordnance Plant Release Characterization n Road, York, PA 2603100044/2000/100	Drilling Comp Logged By Drilling Metho Drilling Bit Di Drilling Starte	od amete	: : er :	Matthew		Drilling Completed Well Construction Well Development	(Page 2 of 2) : 8/16/2011 : 8/17/2011 : 8/18/2011
Depth in Feet	Recovery	Blow Count	DESCRIPTIC		USCS	GRAPHIC	PID (ppm) - bkgd = 0.0	Well: MW-120 Elev.377.63:		Well Construction Information
22-			Auger 22'-25' to next samp interval.	ling					Date C Auger Drilling Driller	Method : Hollow Stem Au
- - 27—	2.0'/2.0'	6 4 7 10	SP - POORLY GRADED S GRAVEL, fine grained sand grained, angular quartz gra moist, loose. CL - CLAY, pale olive (5Y 0 moist, firm, medium plastic	d, coarse ivel, 6/4),	SP CL		0.0 0.0 0.0		Materia Diame From Joints	al : Sch 40 PVC ter : 2" : 0' to 6.33' BPV(: Flush Threaded SCREEN :
-	1.8'/2.0'	2 3	Auger 27'-30' to next samp interval. CL - CLAY, pale olive (5Y (moist, firm, medium plastic	6/4),	CL		0.0	Sand	DETAI	: 6.33' to 39.33' E : Flush Threaded ng : 0.010 slot
32— -	2.0'/2.0'	4 9 12 12 13 14	CL - CLAY, pale olive (5Y) moist, firm, medium plastic limestone fragments. No recovery. CL - CLAY, pale olive (5Y) moist, firm, medium plastic	ity, with 	CL		0.0 0.0	Screen	Bentor bag Flush I BGS-b	hite Hole Plug (3/8"), 2-50 lb. Mount Surface Completion pelow ground surface
-	2.0'/2.0'	11 12 17 17 3	limestone fragments. CL - CLAY, pale olive (5Y (moist, firm, medium plastic limestone fragments. SP - POORLY GRADED S to medium grained, with co	ity, with AND, fine	CL SP		0.0 0.0 0.0		No soil laborat Static v	-below top of PVC I samples were collected for tory analysis. water level collected on
37 — -	1.4'/2.0'	4 9 10 7	angular quartz gravel, olive 5/3), moist, loose. GW - WELL GRADED GR, WITH SAND, light gray (5Y wet, fine to coarse grained	e (5Y AVEL 77/1), angular	GW GW		0.0 0.0		Septer	nber 30, 2011.
-	2.0'/2.0'	10 8 8	gravel with fine to coarse g sand. No recovery. GW - WELL GRADED GR. WITH SAND, light gray (5Y wet, fine to coarse grained gravel with fine to coarse g sand.	AVEL ′7/1), angular	CL		0.0 <u>0.0</u>	Slip Ca	D I	
42-			CL - CLAY, light olive brow 5/6), moist, firm, with quart End of boring at 40' BGS.							

	5					V	VELL	CON	STRU	JCTION	I LOG O	F MW-121	
	Former Building 45 142	· York N 5 UST I 25 Ede	Raval Ordnance Plant Release Characterization n Road, York, PA 2603100044/2000/100	Drilling Com Logged By Drilling Meth Drilling Bit D Drilling Start	od iamete	: : er :	Eichelbo Matthev Hollow 3 8 1/4" C 8/15/20	v J. Loga Stem Au).D.	n		Drilling Con Well Constr Well Develo	ruction : 8/17/	2011 2011
Depth in Feet	Recovery	Blow Count	DESCRIPTIC	Ν	USCS	GRAPHIC	PID (ppm) - bkgd = 0.0	-	: MW- .376.3				onstruction mation
0 - - -	NA		ML - SILT, brownish yellw 6/6), dry, with well graded fine to coarse grained, ang	gravel,	ML		0.0 0.0 0.0 0.0		E	Concrete Bentonite Casing		Driller WELL CASING Material Diameter From Joints	: 8/17/2011 : 4 1/4" : Hollow Stem Auge : Eichelberger's : : Sch 40 PVC : 2" : 0' to 7.23' BPVC : Flush Threaded
5	1.6'/2.0'	4 5 5 6	ML - SILT, brownish yellow 6/6), dry, soft, with quartz g No recovery. Auger 7'-10' to next sampli interval.	gravel.	ML		0.0					WELL SCREEN Material Diameter From Joints Opening ADDITIONAL CC	: Sch 40 PVC : 2" : 7.23' to 35.23' BP : Flush Threaded : 0.010 slot
- 10- -	1.2'/2.0'	2 2 4 3	CL - CLAY, olive (5Y 4/4), very soft, high plasticity. CLAY - olive yellow (2.5Y 6 at 11.2' BGS. Auger 12'-15' to next samp	6/6), wet	CL CL		0.0					DETAILS #0 Morie Sand, 1 Bentonite Hole P bag Flush Mount Surf BGS-below grour BPVC-below top	lug (3/8"), 2-50 lb.
- 15–	. 2.0'/2.0'	WH WH WH 2	CLAY - olive gray (5Y 5/2), very soft, with well graded fine to coarse grained, ang Auger 17'-20' to next samp	gravel, ular.	CL		10.6 2.0 12.7			Sand Screen		WH-split spoon s advance with the hammer alone, n Soil Sample HD-B45T-MW-12 collected from 33 Sample analyzed specific gravity, d size, total organic percent moisture Burlington.	weight of the ot driven. 21-33.0/34.7-0 .0' to 34.7' BGS. I for porosity, lensity, particle c carbon and
- 20-	2.0'/2.0'	4 5 8 9	interval. CL - CLAY, brownish yello 6/8), moist, soft, high plast		CL		0.0					Static water level September 30, 20	

			WELL CONSTRUCTION LOG OF MW-121 (Page 2 of 2)								
Former York Naval Ordnance Plant Building 45 UST Release Characterization 1425 Eden Road, York, PA SAIC Project #2603100044/2000/100				Drilling Company Logged By Drilling Method Drilling Bit Diameter Drilling Started		er :	Matthew		Drilling Completed: 8/17/2011Well Construction: 8/17/2011Well Development: 8/18/2011		
Depth in Feet	Loon Count DESCRIPTIC		DN {	USCS	GRAPHIC	GKAPHIC PID (ppm) - bkgd = 0.0	Well: MW-121 Elev.376.31:	V	Vell Construction Information		
22	1.0'/2.0'	2 5 5	Auger 22'-23' to next samp interval. CL - CLAY, brownish yello 6/8), moist, soft, medium p with limestone fragments.	w (10YR	CL				Date Co Auger I Drilling Driller	CONSTRUCTION ompleted : 8/17/2011 .D. : 4 1/4" Method : Hollow Stem Auge : Eichelberger's CASING :	
	2.0'/2.0'	9 2 5 6 7	ML - SILT, yellow (2.5Y 7/8 with light gray (5Y 7/1), mc	3) mottled ist, soft.	ML		0.0 0.0 0.0		Materia Diametr From Joints WELL S		
-	2.0'/2.0'	7 10 12 13	ML - SILT, yellow (2.5Y 7/8 with light gray (5Y 7/1), mc ML - SILT, yellow (2.5Y 7/8 with light gray (5Y 7/1), mc with limestone fragments.	hist, soft. 3) mottled	ML ML CL		21.2	Sand	Materia Diamete From Joints Openin	er : 2" : 7.23' to 35.23' BF : Flush Threaded	
-	1.0'/2.0'	3 6 7 9	CL - CLAY, yellow (10YR 7 moist, firm, low plasticity. CL - CLAY, brownish yello 6/8), moist, soft, with quart	w (10YR	CL CL SP		11.0	Screen	DETAIL	ONAL CONSTRUCTION .S e Sand, 19-50 lb. bags	
32—	2.0'/2.0'	5 7 9 11	fragments. No recovery. SP - WELL GRADED SAN gray (2.5Y 7/1), fine to coa	rse			11.1		bag	Bentonite Hole Plug (3/8"), 2-50 lb bag Flush Mount Surface Completion	
- - 37— -			grained, angular, wet, very CL - CLAY, olive (2.5Y 6/8 very soft. CL - CLAY, yellowish brow 5/6), moist, firm. Auger 33' - 35' BGS. Shelby Tube Sample 33' - BGS.), wet, n (10YR				Slip Cap	BPVC-t WH-spl advanc hamme Soil Sai HD-B45 collecte Sample specific size, toi	5T-MW-121-33.0/34.7-0 d from 33.0' to 34.7' BGS. analyzed for porosity, gravity, density, particle tal organic carbon and moisture by TestAmerica	
- 42—										vater level collected on aber 30, 2011.	

Depth in Feet	Building 45 142	York Naval Ordnance Plant 5 UST Release Characterization 25 Eden Road, York, PA oject #2603100044/3000/100 DESCRIPTION ML - Asphalt and sub-base follow SANDY SILT with quartz fragmer limestone aggregate, yellowish br (10YR 5/8), very soft, moist. No Recovery. GP - POORLY GRADED QUART GRAVEL with silt and sand, fine t medium grained, angular gravel, st	nts and rown	hod Diame	ter	: Matth : Hollo : 8 1/4 : 6/20/ 0.0 = p6yq - (wdd) CIL 0.0 0.0	2012 We	ogan	Well Co Well Dev		: 6/20/2012 : 6/20/2012 : 6/22/2012 : 6/22/2012 : 6/22/2012 STRUCTION STRUCTION eted : 6/20/2012 : 4 1/4"
0	3.2'/5.0'	ML - Asphalt and sub-base follow SANDY SILT with quartz fragmer limestone aggregate, yellowish br (10YR 5/8), very soft, moist. No Recovery. GP - POORLY GRADED QUART GRAVEL with silt and sand, fine t medium grained, angular gravel, s	nts and rown		GRAPHIC	= pfd - (mdd) - pkgd = 0.0	-	v.377.61: Cover		WELL CONS Date Comple Auger I.D.	Information STRUCTION eted : 6/20/2012 : 4 1/4"
5		SANDY SILT with quartz fragmen limestone aggregate, yellowish br (10YR 5/8), very soft, moist. No Recovery. GP - POORLY GRADED QUART GRAVEL with silt and sand, fine t medium grained, angular gravel, s	nts and rown	ML		0.0				Date Comple Auger I.D.	eted : 6/20/2012 : 4 1/4"
-	2.9'/5.0'	GP - POORLY GRADED QUART GRAVEL with silt and sand, fine t medium grained, angular gravel, s			1	0.0				Driller	: Eichelberger's
-		brown (7.5YR 5/6) matrix, loose, of ML - SILT, yellowish brown (10YF soft, moist. No Recovery.	strong dry.	GP ML		0.0 0.0 0.0		Casing	3	WELL CASII Material Diameter From Joints WELL SCRE Material Diameter	I SCh 40 PVC 2" 2" 0 to 7' BPVC Flush Threaded SCREEN : I SCh 40 PVC er 2"
10	1.9'/5.0'	ML - SILT with fine to coarse graine angular quartz gravel, yellowish brov (10YR 5/6), soft, moist. No Recovery.		ML		0.0				DETAILS #1 Morie Sa	: 7' to 30' BPVC : Flush Threaded : 0.010 slot
15	3.9'/5.0'	GW - WELL GRADED QUARTZ (with silt, fine to coarse grained, at to rounded gravel, brownish yello (10YR6/6) matrix, very hard, mois No Recovery.	ngular w	GW		0.0 0.0 0.0 0.0		— Sand		bag Flush Mount Soil Samples HD-B45T-M collected from and HD-B45	t Surface Completion S W-122-10.5/11.0-0 om 10.5' to 11.0' BGS. 5T-MW-122-23.3/23.8-0
20	3.8'/5.0'	ML - SILT with fine to coarse grai angular quartz gravel, yellowish b (10YR 5/6), soft, moist to wet. ML - SILT, light brownish yellow 6/4) and yellowish brown (10YR 5 firm, moist.	orown / (10YR	ML ML		0.0 0.0 0.0 0.0		Screen	I	Samples and Unleaded Ga TestAmerica Static water 22, 2012.	from 23.3' to 23.8' BGS. analyzed for PA DEP Gasoline Short List by ica Pittsburgh. er level collected on June w ground surface
25	3.5'/5.0'	No Recovery. ML - SANDY SILT, pale yellow (2 7/4), hard, moist.	2.5Y	ML		0.0 0.0 0.0 0.0				BPVC-below	
30 		No Recovery End of boring at 30' BGS.									

I

Γ

	5								(Page 1 of 1)	
Building 45 UST Release Characterization Lo 1425 Eden Road, York, PA Dr Dr			Logged By Drilling Method Drilling Bit Diameter		: Eichelberger's Inc. : Matthew J. Logan : Hollow Stem Auger : 8 1/4" O.D. : 6/20/2012		gan	Drilling Completed: 6/20/2012Well Construction: 6/20/2012Well Development: 6/22/2012		
Depth in Feet	Recovery	DESCRIPTION		USCS	GRAPHIC	PID (ppm) - bkgd = 0.0	_	: MW-123 2.379.64:		/ell Construction Information
-	5.0'/5.0'	ML - Concrete and sub-base follow SILT, brownish yellow (10YR 6/6) olive yellow (2.5Y 6/6), hard, dry.		ML		0.0 0.0 0.0 0.0		- Concrete Bentonite - Casing		ethod : Hollow Stem Au : Eichelberger's SING :
5— - -	4.3'/5.0'	ML - SANDY SILT with sandstone fragments, yellow (10YR 7/8), ver dry. ML - SILT, brownish yellow (10YF very hard, dry.	y hard,	ML ML		0.0 0.0 0.0 0.0 0.0			Material Diameter From Joints WELL SC Material Diameter	: 0' to 7' BPVC : Flush Threaded REEN : : Sch 40 PVC : 2"
10— - - -	4.0'/5.0'	No Recovery. ML - SANDY SILT with fine to coa grained, angular quartz gravel, bro yellow (10YR 6/6), very hard, dry. ML - SILT, yellow (10YR 7/6), firm No Recovery.	ownish	ML		0.0 0.0 0.0 0.0 0.0			DETAILS #1 Morie S Bentonite F Flush Mour Soil Sampl HD-B45T-N collected fr HD-B45T-N collected fr Samples a Unleaded 0 TestAmeric Static wate 22, 2012. BGS-below	: 7' to 30' BPVC : Flush Threaded : 0.010 slot JAL CONSTRUCTION Sand, 17-50 lb. bags hole plug (3/8"), 2-50 lb. ba
15— - - -	3.6'/5.0'	ML - SILT with fine to coarse, and quartz gravel and sandy rock frag brownish yellow (10YR 6/6), very moist.	ments,	ML		0.0 0.0 0.0 0.0		— Sand		unt Surface Completion
20— - - -	3.1'/5.0'	ML - SILT with fine to coarse, and quartz gravel and sandy rock frag brownish yellow (10YR 6/6), very moist. ML - SILT, pale yellow (2.5Y 7/4) moist	hard, hard, , hard,	ML ML GW		0.0 0.0 0.0 0.0		Screen		rom 22.6 to 23.1 BGS. analyzed for PA DEP Gasoline Short List by ica Pittsburgh. er level collected on June w ground surface low top of PVC
25 — - - 30 —	3.7'/5.0'	GW - WELL GRADED QUARTZ (with silt, fine to coarse grained, an to rounded gravel, yellowish brow (10YR 5/8) matrix, hard, moist. No Recovery. GW - WELL GRADED QUARTZ (with silt, fine to coarse grained, an to rounded gravel, yellowish brow (10YR 5/8) matrix, hard, water sa	ngular 'n GRAVEL ngular 'n	GW CL		0.0 0.0 0.0 0.0				
		CL - CLAY, light yellowish brown 6/4), high plasticity, hard, moist. No Recovery. End of boring at 30' BGS.								

T

Γ

	Former Building 45 142	r York Naval Ordnance Plant 5 UST Release Characterization 25 Eden Road, York, PA roject #2603100044/3000/100	Drilling Cor Logged By Drilling Met Drilling Bit I	hod Diame	ter	: Matth : Hollo : 8 1/4		ogan	Drilling Completed Well Construction Well Development	(Page 1 of 1) : 6/21/2012 : 6/21/2012 : 6/22/2012
O Depth in Feet	Recovery	DESCRIPTION ML - SANDY SILT with quartz gra limestone fragments, yellowish bi		SSSU	GRAPHIC	: 6/20/2 0.0 = pkgd - (mdd) OID	Wel	II: MW-124 v.376.37: Cover	, WELL C	Vell Construction Information
- - 5—	3.7'/5.0'	(10YR 5/6), soft, moist. LUMBER. CONCRETE. No Recovery.	/ /	GC		0.0 0.0 0.0		-Bentonite Casing	A	1ethod : Hollow Stem Aug : Eichelberger's
-	2.8'/5.0'	FILL - concrete, red brick and roc fragments. ML - SILT with fine to coarse grai angular quartz fragments, yellowi brown (10YR 5/6), very hard, moi	ned, sh st.	Fill ML CL		0.0			Material Diameter From Joints WELL St	: 0' to 8' BPVC : Flush Threaded
10— - - -	3.5'/5.0'	CL - CLAY, light yellowish brown 6/4), very soft, medium plasticity, No Recovery. CL - CLAY, light yellowish brown 6/4), very soft, medium plasticity, ML - SANDY SILT with sandstone fragments, reddish yellow (7.5YR	(2.5Y wet.	CL ML		0.0 0.0 0.0 0.0			Material Diameter From Joints Opening ADDITIC DETAILS	: 8' to 34' BPVC : Flush Threaded : 0.010 slot
15— - -	5.0'/5.0'	firm, moist. No Recovery. CL - CLAY, light brownish gray (2 6/2), very soft, high plasticity, mo CL - SANDY CLAY, brownish yel	2.5Y ist.	CL CL CL		0.0 0.0 0.0 0.8 0.0			#1 Morie Bentonite Flush Mo Soil Sam	Sand, 20-50 lb. bags e hole plug (3/8"), 3-50 lb. ba punt Surface Completion ples
20	4.2'/5.0'	(10YR 6/6), minor black staining, moist. CL - CLAY, brownish yellow (10Y hard, low plasticity, moist. CL - CLAY, brownish yellow (10Y hard, low plasticity, moist.	′R 6/6),	CL ML		0.0 0.2 0.6 0.3 0.0		Sand Screen	collected HD-B451 collected Samples Unleaded	F-MW-124-17.5/18.0-0 from 17.5' to 18.0' BGS. an F-MW-124-30.0/30.5-0 from 33.0' to 33.5' BGS. analyzed for PA DEP d Gasoline Short List by trica Pittsburgh.
25— - - -	3.3'/5.0'	ML - SILT with fine to coarse grai angular quartz gravel, brownish y (10YR 6/6), hard, moist. No Recovery. ML - SILT with fine to coarse grai angular quartz gravel, brownish y	ned,	GW		0.0 0.0 0.0 0.0			22, 2012 BGS-bel	ater level collected on June ow ground surface elow top of PVC
30 — - - -	3.1'/5.0'	(10YR 6/6), hard, moist. No Recovery. ML - SILT with fine to coarse grai angular quartz gravel, brownish y (10YR 6/6), hard, moist. CL - CLAY, light yellowish brown	ellow (2.5Y	ML CL		0.0 0.0 0.0 0.0				
35 — -		6/4), firm, medium plasticity, mois No Recovery End of Boring at 35' BGS.	st/	<u> </u>	<u> </u>		J			

Γ

			Drilling Cor			· Eiche	lberger		Drilling Comple		1 of 1)
	Building 4	r York Naval Ordnance Plant 5 UST Release Characterization 25 Eden Road, York, PA	Logged By Drilling Met Drilling Bit I	hod		: Matth	iew J. Lo w Stem	ogan	Well Constructi Well Developm	on : 6/2	1/2012 1/2012 2/2012
	SAIC PI	roject #2603100044/3000/100	Drilling Sta	rted	1	: 6/21/	2012		1		
Depth in Feet	Recovery	DESCRIPTION		NSCS	GRAPHIC	PID (ppm) - bkgd = 0.0	_	II: MW-125 v.366.56: — Cover			onstruction rmation
0-		ML - Asphalt and sub-base follow	ved by						WEL	L CONSTRU	ICTION
-	2.6'/5.0'	SANDY SILT, light gray (2.5Y 7/1 gray (2.5Y 5/1), very hard, dry. No Recovery.	I) and	ML		0.0 0.0		Bentonite	Auge	er I.D. ng Method	: 6/21/2012 : 4 1/4" : Hollow Stem Au : Eichelberger's
_							943 945 945	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		L CASING	:
5—		ML - SANDY SILT, light gray (2.5				0.0			Mate Dian Fron Joint	neter n	: Sch 40 PVC : 2" : 0' to 4' BPVC : Flush Threaded
-		and gray (2.5Y 5/1), very hard, d	-	ML		0.0					: Flush Thieadeu
-	2.3'/5.0'	ML - SILT with fine to medium gr angular quartz gravel, light brown gray (2.5Y 6/2), firm, moist. No Recovery.	ained, nish /	ML		0.0			Mate Dian Fron Joint Ope	neter n :s	: Sch 40 PVC : 2" : 4' to 24' BPVC : Flush Threaded : 0.010 slot
10— - -	0.41/5.01	ML - SILT, light brownish gray (2 and gray (2.5Y 5/1), hard to soft,	.5Y 6/2) moist.	ML		0.0 0.0 0.0			DET #1 N	AILS Iorie Sand, 1	NSTRUCTION 3-50 lb. bags ıg (3/8"), 1-50 lb. ba
-	2.4'/5.0'	No Recovery.							Flus	h Mount Surf	ace Completion
- 15— -		ML - SILT, light brownish gray (2 and gray (2.5Y 5/1), hard to soft,	.5Y 6/2) moist.	ML		0.0		-Sand Screen	HD-I colle	cted from 10	5-10.0/10.5-0 .0' to 10.5' BGS. ar 5-21.4/21.9-0
-	2.9'/5.0'	ML - SILT with fine to coarse gra angular quartz gravel, brownish y (10YR 6/6), hard, moist. No Recovery.	ined, /ellow	ML		0.0			Sam Unle	ples analyze	4' to 21.9' BGS. d for PA DEP le Short List by burgh.
-										c water level 2012.	collected on June
20— - -	0.41/5.01	GW - WELL GRADED QUARTZ with silt, fine to coarse garined, a gravel, brownish yellow (10YR 6/ matrix, very hard, moist	ngular 6)	GW CL		0.0 0.0 0.0			BGS	-below grour C-below top	
-	3.1'/5.0'	CL - CLAY, very dark gray (5Y 3/ hard, moist. WEATHERED LIMESTONE.	(1),	LS		0.0					
25—		No Recovery. End of Boring at 25' BGS.]				
-											

	5					WEL	L CO	NSTRUCTION	N LOG (OF MW-	160
		P								(Page 1 of 2)
	Building 45 14	r York Naval Ordnance Plant 5 UST Release Characterization 25 Eden Road, York, PA roject #2603100044/3000/100	Drilling Con Logged By Drilling Met Drilling Bit I Drilling Star	hod Diamet	ter	: Matth		ogan	Drilling C Well Con Well Dev	struction	: 9/4/2012 : 9/4/2012 : 9/6/2012
Depth in Feet	Recovery	DESCRIPTION		uscs	GRAPHIC	PID (ppm) - bkgd = 0.0	-	II: MW-160 v.374.04: ← Cover		W	ell Construction Information
	NA	Pre-cleared with Air-Knife. Unconsolidated material consistir and rock fragments.	ng of silt	ML				-Concrete Bentonite Casing		WELL CON Date Comp Auger I.D. Drilling Me Driller WELL CAS Material Diameter From Joints WELL SCF	: 4 1/4" : Hollow Stem Auger : Eichelberger's SING : : Sch 40 PVC : 2" : 0' to 7.5' BPVC : Flush Threaded
5-	4.0'/5.0'	ML - SILT, grayish brown (2.5Y 5 hard.	i/2), dry,	ML		0.0 0.0 0.0				DETAILS	: Sch 40 PVC : 2" : 7.5' to 37.5' BPVC : Flush Threaded : 0.010 slot AL CONSTRUCTION
- 10-		ML - SILT, very dark grayish brov (2.5Y 3/2), dry, hard. No Recovery. ML - SILT, gray (5Y6/1), with coa		ML		0.0	· 가 가 가 가 가 가 가 가 가 가 가 가			bag Flush Mou Soil Sampl HD-B45T-I	MW-160-20.0/20.5-0
-	4.1'/5.0'	angular quartz gravel from 11.0' - dry, very hard.	- 11.6',	ML		0.0 0.0 0.0	가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	— Sand		HD-B45T-I collected fr Samples a Unleaded 0 TestAmeric	om 20.0' to 20.5' BGS. and MW-160-36.0/36.5-0 om 36.0' to 36.5' BGS. nalyzed for PA DEP Gasoline Short List by ca Pittsburgh.
15-		No Recovery. ML - SILT, gray (5Y6/1)', dry, ver	v hard			0.0		Screen		BGS-belov	v ground surface w top of PVC
-			y nard.	ML		0.0					
-	4.6'/5.0'	GW - WELL GRADED QUARTZ fine to coarse grained, angular, fi and silt matrix, gray (5Y 6/1), dry hard.	ne sand	GW		0.0					
20-		No Recovery.]	2017 - 2017 - 2017 2017 - 2017 - 2017 2017 - 2017 - 2017	-					

		AIC.						(Page 2 of 2)
	Building 4	r York Naval Ordnance Plant 5 UST Release Characterization 25 Eden Road, York, PA oject #2603100044/3000/100	Drilling Cor Logged By Drilling Met Drilling Bit I Drilling Sta	hod Diame	ter	: Matthe	w J. Logan Well Co v Stem Auger Well De O.D.	Completed: 9/4/2012onstruction: 9/4/2012evelopment: 9/6/2012
Depth in Feet	Recovery	DESCRIPTION		NSCS	GRAPHIC	PID (ppm) - bkgd = 0.0	Well: MW-160 Elev.374.04:	Well Construction Information
-20		CL - CLAY, light olive brown (2.5 moist, saturated with water from 2 21.6', very soft, medium plasticity	20.9' -	CL		0.0		WELL CONSTRUCTION Date Completed : 9/4/2012 Auger I.D. : 4 1/4" Drilling Method : Hollow Stem Aug
-	4.4'/5.0'	GW - WELL GRADED QUARTZ fine to coarse grained, angular, le medium grained, angular sand, li gray (5Y 6/2), moist, very hard.	enses of	GW		0.0 0.0 0.0		Driller : Eichelberger's WELL CASING : Material : Sch 40 PVC Diameter : 2" From : 0' to 7.5' BPVC Joints : Flush Threaded
25—		No Recovery. GW - WELL GRADED QUARTZ fine to coarse grained, angular, le medium grained, angular sand, li	enses of	GW		0.0		WELL SCREEN : Material : Sch 40 PVC Diameter : 2" From : 7.5' to 37.5' BPV Joints : Flush Threaded
-	3.8'/5.0'	gray (5Y 6/2), moist, very hard. CL - CLAY, olive gray (5Y5/2), m very soft, high plasticity.		CL		0.0		Opening : 0.010 slot ADDITIONAL CONSTRUCTION DETAILS #1 Morie Sand, 16-50 lb. bags Bentonite hole plug (3/8"), 1.5-50 lb. bag
- 30-		No Recovery.				0.0	Screen	Flush Mount Surface Completion Soil Samples
_		SM - SAND with SILT and GRAV grained sand, coarse angular gra olive gray (5Y 4/2), moist, loose. ML - SILT, olive (5Y 5/4), moist, f	vel,	SM	 A. C. C.	0.0		HD-B45T-MW-160-20.0/20.5-0 collected from 20.0' to 20.5' BGS. an HD-B45T-MW-160-36.0/36.5-0 collected from 36.0' to 36.5' BGS.
-	2.9'/5.0'	No Recovery		ML		0.0		Samples analyzed for PA DEP Unleaded Gasoline Short List by TestAmerica Pittsburgh. Static water level collected on September 6, 2012.
- 35–		SP - POORLY GRADED SAND, brown (2.5Y 5/4), medium graine angular, moist, loose.		SP CL		0.0		BGS-below ground surface BPVC-below top of PVC
-	3.9'/4.0'	CL - CLAY, olive (5Y 4/3), moist, medium plasticity. GP - POORLY GRADED GRAVE grained, angular, with limestone		GP		0.0		
-		fragments, wet, very hard. LS - LIMESTONE, weathered, wi seams, gray (2.5Y 5/1), moist. No Recovery.	th clay	LS		0.0 0.0		

٦

Т

Γ

Langan Environmental Services, Inc.

WELL CONSTRUCTION SUMMARY

Well No. _____

PROJECT		·····		PROJEC	5 MD				
	Harley I	Davidson						1406701	
LOCATION	York, P	Δ		ELEVADO	IN AND DATUM				
DRELING AGENCY		<u> </u>		DATE ST	RIED	DATE FR	NISHED		
	Eichelbe	erger's			6/9/1998		0/199	3	
drolling equipment	CME-85	-		DRILLER		A	_		
SIZE AND TYPE OF BIT		·		INSPECTO		Austin			
	4.25 inc	h Hollow Sten	n Auger		Lou F	Russo/Di	ave W	ilson	
Well was	advanced by	hollow stom	uger metho	d to 67	foot The				
inside the	auger stem	Sand and the	n hentonita		ieet. Ine idod oc i	e screen	was s	et from 65 to 40 t	ft.
removed.	Benseal grou	it and a flush i	nount asser	mbly col	mnieted	the well	is we to the	Eurface	
NETHOD OF WELL DEVELOPI								Sunace	
		d on 7/16/98	and 7/17/08		irlift mot	had at a	roto a	f 0.75 gallons	
per minut	e for a total o	of 3 hours. The	well was al	so sura	anni mei ad savai	nou al a	rate c	0.75 gallons	
The disch	arge was ver	<u>y dirty at the s</u>	start, but a li	aht brov	vn at the	end	•		
TYPE OF CASING		DIAMETER		TYPE OF E	BACKFILL HATERIN				
TYPE OF SCREEN	PVC	2 Inch				Port	land (Cement	
in c or ouncer	PVC	2 Inch		TIPE OF S	EX MIERAL Bonto	nita Pall	ote/Ca	ement Bentonite	 Misz
BOREHOLE DIAMETER				TYPE OF F	LTER MATERIAL			ement bentonite	VIIX
						<u># 1</u>	Morie	Sand	
TOP OF CASING	ELEVATION		DEPTH			DETAILS			DEPTH
					Steel Prot	ective Cover			(FT)
Flush Mount								SOIL	
TOP OF SEAL	ELEVATION		DEPTH			0	Bensea		
		Bentonite	31 ft.				Grout		
top of filter	ÉLEVATION		DEPTH	PVC					
		Sand pack	35 ft.	Riser				Silts, Sand, and	31.0
top of screen	ELEVATION		DEPTH			Bentoniti	3	Gravel.	
BOTTON OF BORING	ELEVATION		40 ft.		dito/d	Seat			35.0
	CCC MINN		ыртн 67 ft.						
SCREEN LENGTH									
	25 ft.								40.0
SLOT SIZE		·····		-					
	.010 inch								
GROU	NDWATER E	LEVATIONS							
		DATE							
DTW = 19.0 fr	1. on 6/10/98			_					
DTW = 22.3 ft	t on 7/16/08	DATE		•					
	. 011 // 10/96	DATE			E				
		unit.		PVC			Sand		
LEVATION		DAJE		Screen			t R(C)		
				_					
LEVATION		DATE							65.0
LEVATION		DATE	<u> </u>	-					07.0
									67.0

Boring L	.ocai	11 m m					ct No.	140670	
D-illi /				York,	PA	Eleva	tion and	Datum	
		pany			lberger's		Started		Date Finished
Drilling E				CME-		6/9/19			6/10/98
Size and	Тур				ID Hollow Stem Auger	Comp	eletion De	epth	Rock Depth
Casing			PVC			67 ft.			Not Encounter
Casing H		ner	Weigh		Drop	Water	Level	19.0 ft. a	at completion
Sampler				2" OD	Split Spoon	Drille	r	Bob Aus	tin
Sampler	Harr	nmer V	Veight	r	140 lb Drop 30"	Inspe	ctor	Lou Rus	so
Depth	s	Туре	Recov.	SPT	DESCRIPTION			REMAR	KS
(ft)		┼	(ft)	bi/6*	Creation	- I			·······
1 2	S1	SS	NA	NA	Grass/ topsoil Brown, fine to medium SILTY SAND; tr fine GRAVEL. Dry, medium dense.	13:00			
3									
4									
5									
_					Brown SILT; tr fine to medium SAND;		Odor pre	sent.	
6	S2	SS	0.9		tr fine GRAVEL; (quartz). Dry,				background
			ĺ		medium dense.			at boreho	•
7				11					
8									
9									
_									
10				l					
	53	~	<u> </u>		Brown, SILT; tr fine to medium SAND;				
11	২৫	SS	0.5		tr fine sub angular, GRAVEL.				
12				8	Dry, medium dense.				
	+								
13									
14									
15									
16	S4	ss	1.8	1	Light brown, CLAYEY SILT;	5	5 ppm		
	34	33	1.0	4 ft 5	r fine to coarse SAND.				
17				5	(dry/moist)	1	ppm		
					(dry/moist)	4	ppm		
18									
19									
<u> </u>									
20									
21 5	S5	ss	2.0		ight brown, mottled orange, CLAYEY			Borehole =	15 - 20 ppm
		55	2.0		ILT; tr fine to coarse SAND; tr fine RAVEL, subangular, limestone.		0 ppm		
			Test N-	<u> </u>	LANGAN Engineering and		0 ppm		

•

4

Project					y Davidson	Projec	t No. 1406	701
Boring				York,			Started	Date Finished
Drilling	Com	pany	r	Eiche	lberger's	6/9/19	98	6/10/1998
Depth	s	Туре	Recov.	SPT	DESCRIPTION		REM	ARKS
(ft)	<u> </u>	ļ	(ft)	Ы/6"				
22	<u>S5</u>	ļ		6	(moist/dry)			
23								
24								
25	1							
26	S6	SS	2	6 7	Brown, CLAYEY SILT; tr to some fine to coarse SAND; tr fine GRAVEL,			ole = 20 ppm Ily zone = 25.5 to 2
27				8 9	angular quartz.		5 ppm 7 ppm	ny 2010 – 20.0 10 2
28							/ ppm	
29								
30								
					Light brown/gray SILT; some CLAY;		0.8 ppm	Top of bentonite
31	S7	SS	0.5	8	some fine to coarse SAND; tr fine subangular GRAVEL.			at 31 ft.
32					Loose to dense, moist.		Spoon wet.	
33								
34								
35								
36	S8	ss	2	7	Light brown CLAYEY SILT; tr to some fine to coarse SAND; tr fine, quartz,		ppm 5 ppm	
37			-	9	angular to subangular, GRAVEL.	2	.5 ppm ppm	
					Dense, moist.	2	ppm Top of s	and pack at 35 ft.
38								
40						Т	op of screen.	
41	S9	ss	1.1	6	Brown, CLAYEY SILT; tr fine SAND. moist	0.	5 ppm backgrou	ind
42				5 6				
landard I		ration	Test N	Value				
	5,101			v ulue	LANGAN Engineering and River Drive Center 1,	Enviro	onmental Servic	ces, Inc.

-

Project N					y Davidson	Projec	t No. 1406701	
Boring L				York,		Date S	Started	Date Finished
Drilling C	iom)	pany		Eiche	lberger's	6/9/19	98	6/10/1998
Depth (ft)	s	Туре	Recov. (ft)	SPT* bi/6*	DESCRIPTION		REMAR	<s< th=""></s<>
43								
44								
45								
46	S10	SS	0.8	1 1 1	Light brown, CLAYEY SILT; tr fine to medium SAND; fine GRAVEL.		2-4 ppm	
				2	Wet.		Quartz in nose piec	e.
49								
50 51\$	511	SS	2		Brown/gray CLAYEY SILT; tr fine to coarse SAND; tr fine GRAVEL.	N	√ery soft 50 to 51 ft	
52			_	5	Wet		Dense 51 to 52 ft.).5 ppm	
53							F. F	
54								
55								
S	12	ss	1.3	6 f	Brown, CLAYEY SILT; tr to some ine to coarse SAND and fine GRAVEL.	1	-5 ppm Pieces red	gravel
57	_			7				
_ <u>58</u> S	13	ss	0.3	1	Brown, CLAYEY SILT; some fine to coarse SAND and fine GRAVEL.	W	TOP 16:00 6/9/98 Ater started coming	into hole very
59	_			7		pl	pidly. Suspect that e released containi a higher "k" unit.	55 - 57 ft sam- ng pressure
				3 В	Brown, CLAYEY SILT; some fine to	0	16:00 dtw=34 ft b	
<u>61</u> S	14	ss	1	5 c	oarse SAND and fine GRAVEL.		16:30 dtw= 24 ft. b 18:00 dtw = 21 ft.	
62				5 q 5	uartz, rounded to subrounded.	Se	eemed stable art 08:00 6/10/98	
63						PI	D = 8-10 from bore 3, S14, S15, backg	
			Fest N-				adings = 0.5 ppm.	

Project Nam				/ Davidson		Proj	ect No. 14067	'01
Boring Loca	tlon		York,				Started	Date Finished
Drilling Com	pany			berger's		6/9/1		6/10/1998
Depth S	Time	Recov.	SPT*		DECODIOTION			
1	iype				DESCRIPTION		REMA	RKS
(ft)	_	(ft)	bi/6"	ļ				
~								
64								
~								
65	 						Bottom of screer	at 65 ft. 10 slot.
60-010			5					
<u> </u>	SS	1.3	5					
~ _			5					
67			5					
~				TD = 67 ft.				
68								
<u> </u>								
69						1		
70		l						
-								
-								
!								
-								
	.							
		T						
-								
4								
-								
-								
·								
andard Penel	ration	rest N-	Value	L	ANGAN Engineering a	nd Envir	componial Somilar	a las

TABLE 2

SITE-WIDE GROUNDWATER LEVELS AND ELEVATION DATA

FORMER YORK NAVAL ORDNANCE PLANT

1425 Eden Road, York PA 17402

Monitoring Location	Date	Time	Reference Elevation	Depth (ft.)	Water Level
MW-55	6/4/2009		(ft. AMSL)	· · · · · · · · · · · · · · · · · · ·	(ft. AMSL)
MW-56	6/4/2009	12:48	365.22	20.8	344.42
MW-50 MW-57	6/4/2009	14:10	371.83	17.76	354.07
MW-64D	6/5/2009	13:34	364.54	18.56	345.98
MW-645	6/5/2009	10:02	416.43	57.13	359.3
MW-65D		10:03	416.34	32.1	384.24
MW-658	6/5/2009	8:36	546.8	46.83	499.97
MW-66D	6/5/2009	8:37	546.82	48.04	498.78
MW-66S	6/5/2009	9:03	506.92	37.49	469.43
MW-67D	6/5/2009	9:04	506.73	36.57	470.16
	6/5/2009	9:51	446.26	1.43	444.83
MW-67S	6/5/2009	9:53	446.26	8.89	437.37
MW-68	6/5/2009	9:44	458.06	5.7	452.36
MW-69	6/5/2009	7:00	411.9	6.31	405.59
MW-70D	6/5/2009	7:08	413.26	16.55	396.71
MW-70S	6/5/2009	7:10	413.2	16.61	396.59
MW-74D	6/4/2009	9:42	359.79	19.44	340.35
MW-74S	6/4/2009	9:43	359.85	20.18	339.67
MW-75D	6/4/2009	8:09	359.85	20.32	339.53
MW-758	6/4/2009	8:10	359.03	19.02	340.01
MW-77	6/4/2009	15:39	379.48	23.38	356.1
MW-78	6/4/2009	15:35	367.08	13.28	353.8
MW-79	6/4/2009	14:13	375.84	20.72	355.12
MW-80	6/4/2009	13:40	370.29	23.72	346.57
MW-81D	6/4/2009	16:23	359.89	15.61	344.28
MW-81S	6/4/2009	16:22	360.12	16.09	344.03
MW-82	6/4/2009	11:22	384.27	37.52	346.75
MW-83	6/4/2009	15:45	363.69	12.56	351.13
4W-84	6/4/2009	15:30	366.97	13.28	353.69
AW-85	6/4/2009	10:45	371.54	26.53	345.01
AW-86D	6/5/2009	6:54	406.56	7.8	398.76
AW-86S	6/5/2009	6:55	406.5	10.13	396.37
4W-87	6/4/2009	13:44	370.64	23.83	346.81
/W-88	6/4/2009	13:27	367.93	22.31	345.62
4W-91	6/5/2009	9:18	501.18	53.69	447.49
1W-92	6/5/2009	10:09	476.87	81.28	395,59
fW-93D	6/4/2009	8:16	360.14	18.65	341.49
1W-93S	6/4/2009	8:14	360.76	18.48	342.28
IW-94	6/4/2009	14:19	365.03	10.45	354.58
IW-95	6/4/2009	9:50	358.72	18.88	339.84
IW-96D	6/4/2009	9:55	361	21.87	339.13
1W-96S	6/4/2009	9:56	361.21	22.17	339.04
IW-97	6/4/2009	9:19	357.39	21.03	336.36
(W-98D	6/4/2009	7:05	361.41	19.96	341.45
IW-98I	6/4/2009	7:07	360.78	20.38	340.4
IW-98S	6/4/2009	7:09	360.77	20.2	340.57

Note:

A= Location was artesian.

DDC= Gauged on different date due to inaccessibility. OG= Water was over the gauge.

Page 3 of 4

D= Location was dry. *= Active extraction well. Table 5 Groundwater Quality Analyses Summary June 2009 Key Well Sampling Event

	Sametre finel Inter all and	l ocation8D				- L	-		Former York Naval Ordnance Plant - York, PA	al Ordnan	ance Plant - Yor	ork, PA									
(1921) (1921)<	(ugb) (ugb) <th< th=""><th></th><th>Used Aquifer F</th><th></th><th>_</th><th></th><th></th><th></th><th>MW-75S</th><th>77-WM</th><th>62-WM</th><th>MW-81D</th><th>MW-81S</th><th>MW-82</th><th>MW-85</th><th>MW-87</th><th>MW-88</th><th>MW-91</th><th>MW-92</th><th>MW-93D</th><th>10-WM</th></th<>		Used Aquifer F		_				MW-75S	77-WM	62-WM	MW-81D	MW-81S	MW-82	MW-85	MW-87	MW-88	MW-91	MW-92	MW-93D	10-WM
131 231 <th>10 20<</th> <th>. 2</th> <th>(1/6n)</th> <th></th> <th></th> <th>(J/GN)</th> <th></th> <th></th> <th>11147007</th> <th>1/8/2008</th> <th>6/22/2009</th> <th>7/13/2009</th> <th>7/13/2009</th> <th>6/23/2009</th> <th>7/1/2009</th> <th>7/9/2009</th> <th>6/26/2009</th> <th>6/25/2009</th> <th>7/8/2009</th> <th>6/26/2009</th> <th>6/17/200</th>	10 20<	. 2	(1/6n)			(J/GN)			11147007	1/8/2008	6/22/2009	7/13/2009	7/13/2009	6/23/2009	7/1/2009	7/9/2009	6/26/2009	6/25/2009	7/8/2009	6/26/2009	6/17/200
Not Not <td>0 200 200 200 730</td> <td>1,4-Dioxane</td> <td>5.6</td> <td>24</td> <td></td>	0 200 200 200 730	1,4-Dioxane	5.6	24																	
00 300	300 300 <td>Cyanide, Free</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cyanide, Free				0										19					
300 300 <td>300 300 300 700 100<td>Cyanide, Free</td><td>200</td><td>200</td><td>200</td><td>730</td><td></td><td></td><td></td><td></td><td>1910</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	300 300 300 700 100 <td>Cyanide, Free</td> <td>200</td> <td>200</td> <td>200</td> <td>730</td> <td></td> <td></td> <td></td> <td></td> <td>1910</td> <td></td>	Cyanide, Free	200	200	200	730					1910										
100 200 100 <td>100 100<td>Cyanide, Total</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.3 B J</td><td>14</td><td></td><td></td></td>	100 100 <td>Cyanide, Total</td> <td></td> <td>3.3 B J</td> <td>14</td> <td></td> <td></td>	Cyanide, Total																3.3 B J	14		
1 1	1 0	METAL	200	200		730					10 U							26			
10 10<	10 10<	Antimony	6	6	A	45												3	2		
4 4 5 7	Tomini 1 0 <td>Arsenic</td> <td>10</td> <td>10</td> <td>10</td> <td>3000</td> <td></td>	Arsenic	10	10	10	3000															
10 10<	100 100 <td>Benytlium</td> <td>4</td> <td>4</td> <td></td> <td>255</td> <td></td>	Benytlium	4	4		255															
Thrun 100 </td <td>Torrini 100</td> <td>Cadmium</td> <td>5</td> <td>5</td> <td>5</td> <td>2 4</td> <td></td>	Torrini 100	Cadmium	5	5	5	2 4															
Immuni 100<	Torunum 100 90 <	hromium	100	100	100	2															
5 5 13 5 13 5 13 5 14 1 10	2 3 1 0	lexavalent Chromium	100	100		110															
10 10<	10 10<	ead	5	8	15																
Oteo 100 <td>Oteol 10</td> <td>lercury</td> <td>2</td> <td>2</td> <td>2</td> <td>0.57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.52 B</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Oteol 10	lercury	2	2	2	0.57										0.52 B					
Otrog 0 <td>Otope Image <th< td=""><td>ickel</td><td>100</td><td>100</td><td></td><td>730</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td>	Otope Image Image <th< td=""><td>ickel</td><td>100</td><td>100</td><td></td><td>730</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	ickel	100	100		730															
1 0	1 0 1 0 10	IETAL (Dissolved)		and the second se		22.															
10 10<	10 10<	ntimony	9	8	9	15															
6 8 8 7	6 6 7	senic	10	10	10	0.045															
10 0 10 </td <td>5 5 5 6 10</td> <td>aryllium</td> <td>4</td> <td>4</td> <td>4</td> <td>255</td> <td></td>	5 5 5 6 10	aryllium	4	4	4	255															
Tomment 100	Tomment 100	admium	5	5	4	2 q															
Torrint 10 </td <td>Totulini 100 10</td> <td>romium</td> <td>100</td> <td>100</td> <td>100</td> <td></td>	Totulini 100 10	romium	100	100	100																
5 5 15 15 15 16 11 <td>5 5 5 5 5 5 5 5 5 5 5 5 5 5 1</td> <td>exavalent Chromium</td> <td>100</td> <td>100</td> <td>2</td> <td>110</td> <td></td>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 1	exavalent Chromium	100	100	2	110															
10 2 0 7 057 11 <td>2 3 057 057 148 2600 2800 730</td> <td>ad</td> <td>5</td> <td>5</td> <td>15</td> <td></td>	2 3 057 057 148 2600 2800 730	ad	5	5	15																
100 100 100 730 110 730 110 1111 11111<	100 100 <td>ercury</td> <td>2</td> <td>2</td> <td>0</td> <td>0.57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ercury	2	2	0	0.57										5					
1 621 416 760 733 124 3451 521 545 256 521 413 2861 4335 1 200 700 100 110 511 100 221 101	1000000000000000000000000000000000000	Ckel	100	100	-	730															
To To<	Mononlane 70 73 734 343 5921 545 2546 5321 7 Mononlane 70	TAL VOC				3															
Nicrothere 70 70 70 70 70 70 71	Nicroeffiane 70						86.21	4168	26600	2980	78.3	1243	3482	1 10 07	1	1 0,00					
Matrix N M <td>Monoment No Mos Mos</td> <td>1 2. Tatrachiorophone</td> <td><u> 04</u></td> <td></td> <td>and the second se</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>2005</td> <td>17.20</td> <td>04.0</td> <td>7040</td> <td>532.1</td> <td>141.9</td> <td>289.1</td> <td>483.5</td> <td>7.17</td>	Monoment No Mos	1 2. Tatrachiorophone	<u> 04</u>		and the second se							2	2005	17.20	04.0	7040	532.1	141.9	289.1	483.5	7.17
Matrixe 0.0 0.0 2.0 2001 2001 0.00 41 50 72 71	Control Col	1-Trichtoroethane	0/	70		0.52	2 U	200 U	2000 U	100 U	4 U T	5011	12011	111	┢	1001					
Matrix 5 0 0 200 1001 41 500 1001 41 001 101	Time 57 60 200 2000 1000 40 500 170 50 170 50 500	2 2-Tetrachloroethene	200	200	200	9100	2 U	200 U	2000 U	100 U	4 U	50.11	1101		╉			10 0	10 C	12 U	10
27 10 24 20 2001 2001 100 41 50 100 150 100 250 100 100 101	are 27 110 24 27 2001 20001 1001 21 500 1000 250 ere 7	.2-Trichloroethane	2.7	0.3	-	0.067	2 U	200 U	2000 U	100 U	4 U	50 U	120 ()		╉	557	L /./		19 0	9.8 J	-
min 7 7 7 3 24 0.664 2001 1001 211 610 221 0.61 2001 1001 101	me 7 30 0.65 0.65 0.60 100 21 600 61 21 600 7 7 7 7 90 7 7 7 7 7 100 250 100 250 100 250 20 200	-Dichloroethane	- 40	0	0	0.24	20	200 U	2000 U	100 U	4 U	50 U	12011	2	+	3 2 2	D 07			12 U	⊐⊢
06 06 06 060 070 2001 1001 1001 100 101 <td>Bit Dist <thd< td=""><td>-Dichloroethene</td><td></td><td>10</td><td></td><td>2.4</td><td>0.68 J</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>21</td><td>50 U</td><td>15.1</td><td>0 21 1</td><td>+</td><td></td><td>1 20</td><td></td><td></td><td>7</td><td>-</td></thd<></td>	Bit Dist Dist <thd< td=""><td>-Dichloroethene</td><td></td><td>10</td><td></td><td>2.4</td><td>0.68 J</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>21</td><td>50 U</td><td>15.1</td><td>0 21 1</td><td>+</td><td></td><td>1 20</td><td></td><td></td><td>7</td><td>-</td></thd<>	-Dichloroethene		10		2.4	0.68 J	200 U	2000 U	100 U	21	50 U	15.1	0 21 1	+		1 20			7	-
are 5 0105 2 U 200U 200U 400 40 50U 100U 100U <td>are 5 0.055 2 U 200U 200U 100U 4 U 50U 100U 100U 100U 25U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 100U 25U 20U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 25U 20U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 25U atom 7100 20U 200U 2000U 100U 4 U 50U 100U 25U atom 7100 20U 200U 2000U 200UU 200UU 200U <t< td=""><td>-Dibromoethane</td><td>0.05</td><td>0.0c</td><td>100</td><td>340</td><td>20</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>4 U</td><td>50 U</td><td>120 U</td><td></td><td>+</td><td>+</td><td>0.07</td><td></td><td></td><td>4.1 J</td><td>0.66 J</td></t<></td>	are 5 0.055 2 U 200U 200U 100U 4 U 50U 100U 100U 100U 25U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 100U 25U 20U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 25U 20U pane 5 0.15 2 U 200U 2000U 100U 4 U 50U 100U 25U atom 7100 20U 200U 2000U 100U 4 U 50U 100U 25U atom 7100 20U 200U 2000U 200UU 200UU 200U 200U <t< td=""><td>-Dibromoethane</td><td>0.05</td><td>0.0c</td><td>100</td><td>340</td><td>20</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>4 U</td><td>50 U</td><td>120 U</td><td></td><td>+</td><td>+</td><td>0.07</td><td></td><td></td><td>4.1 J</td><td>0.66 J</td></t<>	-Dibromoethane	0.05	0.0c	100	340	20	200 U	2000 U	100 U	4 U	50 U	120 U		+	+	0.07			4.1 J	0.66 J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cpane 5 013 210 2000 2000 1000 410 500 1000 1500 1000 250 5.6 5.6 6.1 4001 40001 20001 20001 10001 550 1001 550 1 5.6 6.1 4001 40001 20001 20001 2001 20001 2001 2001 20001 2001 20001 2001	-Dichloroethane	5.00	co'n	80	0.0065	20		2000 U	100 U	4 U	50 U	120 U		+	+	1 10		+	6.6 J	2
5.6 <t< td=""><td>56 7100 2000 2</td><td>-Dichloropropane</td><td>5</td><td></td><td></td><td>0.10</td><td>20</td><td></td><td>2000 U</td><td>100 U</td><td>4 U</td><td>50 U</td><td>120 U</td><td></td><td>t</td><td>┿</td><td>25 11</td><td></td><td>+</td><td>071</td><td></td></t<>	56 7100 2000 2	-Dichloropropane	5			0.10	20		2000 U	100 U	4 U	50 U	120 U		t	┿	25 11		+	071	
4000 4000 7000 20000 70000 20000 70000 20000 70000 20000 70000 20000 70000 20000 70000 20000 70000 20	4000 4000 7100 200 4000 7000	-Dioxane	5.6	24	0	1.38	0.7		2000 U	100 U			120 U		┢	+	25.0	101	+	2 2	
Interfact FOU ZOUU	Interf Interf<	lutanone	4000	4000		7100	100		400000 U	20000 U			5000 U	T			+	+	┿	250011	0-1000
190 190 <td>190 190 190 190 190 100 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 <th< td=""><td>lexanone</td><td></td><td></td><td></td><td>3</td><td>1100</td><td></td><td></td><td>1000</td><td>1</td><td></td><td>1200 U</td><td>H</td><td></td><td>-</td><td>┿</td><td>+</td><td>+-</td><td>12011</td><td>101</td></th<></td>	190 190 190 190 190 100 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 1000 2500 <th< td=""><td>lexanone</td><td></td><td></td><td></td><td>3</td><td>1100</td><td></td><td></td><td>1000</td><td>1</td><td></td><td>1200 U</td><td>H</td><td></td><td>-</td><td>┿</td><td>+</td><td>+-</td><td>12011</td><td>101</td></th<>	lexanone				3	1100			1000	1		1200 U	H		-	┿	+	+-	12011	101
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3700 3700 5700 500 500 500 700<	Aethyl-2-Pentanone	190	410		2000	20.11	20001			╈		1200 U	+			-	t	+	120 U	10 U
UE3 0.045 40 U 400U 400U 200U 700U 250U 700U 750U 700U 700U 750U 700U 70U 70	US3 0.045 40 U 400 U 250 U 90 U 50 U <	BIONE	3700	10000		22000	20 U	2000 U			+		0.0021	+	-+	-			+	120 U	10 U
Name 0 0.41 2.0 2001 2000 20	Itilane 0 </td <td>PIOLISIC INC.</td> <td>530</td> <td>2.7</td> <td></td> <td>0.045</td> <td>40 U</td> <td>4000 U</td> <td></td> <td>2000 11</td> <td>+</td> <td></td> <td></td> <td>╉</td> <td>-+</td> <td>-+</td> <td>-+</td> <td></td> <td></td> <td>120 U</td> <td>10 U</td>	PIOLISIC INC.	530	2.7		0.045	40 U	4000 U		2000 11	+			╉	-+	-+	-+			120 U	10 U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Montane 90 90 90 90 100 210 2001 </td <td>mochloromathana</td> <td>0</td> <td>5</td> <td>2</td> <td>0.41</td> <td>2.0</td> <td>200 U</td> <td>-</td> <td>2000</td> <td></td> <td>+</td> <td>1000</td> <td>╉</td> <td>+</td> <td>-+</td> <td>-+</td> <td>-</td> <td>-</td> <td>250 U</td> <td>20 U</td>	mochloromathana	0	5	2	0.41	2.0	200 U	-	2000		+	1000	╉	+	-+	-+	-	-	250 U	20 U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Model 100 0.12 2.0 2001 1001 410 500 1200 100 2500 10 10 10 10 10 10 10 10 200 2500 10 10 10 10 10 10 10 200 2001 1001 410 50 100 250 250 6 1900 8.5 20 2001 1000 410 50 120 10 10 250 250 forde 5 5 20 2001 1000 410 50 120 110 50 150 250 <td>modichloromethane</td> <td>3 5</td> <td>8</td> <td></td> <td></td> <td>2 U</td> <td>200 U</td> <td>1</td> <td>100 U</td> <td>4 11</td> <td>+</td> <td>1201</td> <td></td> <td>1</td> <td>-+</td> <td>25 U</td> <td></td> <td></td> <td>12 U</td> <td>1 U</td>	modichloromethane	3 5	8			2 U	200 U	1	100 U	4 11	+	1201		1	-+	25 U			12 U	1 U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 80 85 210 2001 7001 410 500 470 10 50 4001 250 0 100 8.7 210 2001 2001 410 500 470 10 50 4001 250 <th4< td=""><td>motorm</td><td>3</td><td>100</td><td></td><td>0.12</td><td>2 U</td><td>200 U</td><td>1-</td><td>100 U</td><td>4 11</td><td>Ť</td><td>12011</td><td></td><td>+</td><td>4</td><td>25 U</td><td>+</td><td>-</td><td>12 U</td><td>10</td></th4<>	motorm	3	100		0.12	2 U	200 U	1-	100 U	4 11	Ť	12011		+	4	25 U	+	-	12 U	10
0 100 100 10 100	0 100 100 100 100 200 200 200 1000 200	momethane	00	88		8.5	2 U	200 U	2000 U	1001	4 0	1	120 11		+	+	25 U	10 U	-+	12 U	1 U
Indice 5 4.00 20 200 200 100 120 100 120 100 120 <td>Include 5 5 7 100 20 2001 1001 410 501 1201 111 511 1001 251 100 100 91 201 2001 1001 410 501 101 511 1001 251 nethane 80 60 0.2 201 2001 1001 410 501 111 511 1001 2511 100 91 210 2001 1001 410 501 1201 11 51 1001 251 100 90 015 210 2001 1001 41 501 1201 11 51 1001 251 100 80 013 210 2001 1001 41 501 110 11 501 1501 1001 251 100 30 30 213 2001 1001 410 501 1201 110 1001 251<td>bon Disuttide</td><td>1900</td><td>1100</td><td>T</td><td>8.7</td><td>2 U</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>4 U</td><td>┢</td><td>120 11</td><td></td><td>╈</td><td>╇</td><td></td><td>n n</td><td>+</td><td>12 U</td><td>Ð</td></td>	Include 5 5 7 100 20 2001 1001 410 501 1201 111 511 1001 251 100 100 91 201 2001 1001 410 501 101 511 1001 251 nethane 80 60 0.2 201 2001 1001 410 501 111 511 1001 2511 100 91 210 2001 1001 410 501 1201 11 51 1001 251 100 90 015 210 2001 1001 41 501 1201 11 51 1001 251 100 80 013 210 2001 1001 41 501 110 11 501 1501 1001 251 100 30 30 213 2001 1001 410 501 1201 110 1001 251 <td>bon Disuttide</td> <td>1900</td> <td>1100</td> <td>T</td> <td>8.7</td> <td>2 U</td> <td>200 U</td> <td>2000 U</td> <td>100 U</td> <td>4 U</td> <td>┢</td> <td>120 11</td> <td></td> <td>╈</td> <td>╇</td> <td></td> <td>n n</td> <td>+</td> <td>12 U</td> <td>Ð</td>	bon Disuttide	1900	1100	T	8.7	2 U	200 U	2000 U	100 U	4 U	┢	120 11		╈	╇		n n	+	12 U	Ð
100 100 100 100 120 100 120 100 120 100 120 <td>Title 0.2 2.0 2.00 2.00 100 4.0 5.0 100 2.0</td> <td>bon Tetrachloride</td> <td>200</td> <td>2017</td> <td></td> <td>900</td> <td>2 U</td> <td>200 U</td> <td>2000 U</td> <td>100 U</td> <td>4 U</td> <td>┢</td> <td>120 ()</td> <td></td> <td>╈</td> <td>╀</td> <td>0.00</td> <td>D ::</td> <td>+</td> <td>12 U</td> <td>7</td>	Title 0.2 2.0 2.00 2.00 100 4.0 5.0 100 2.0	bon Tetrachloride	200	2017		900	2 U	200 U	2000 U	100 U	4 U	┢	120 ()		╈	╀	0.00	D ::	+	12 U	7
nethane 80 800 800 800 800 91 200 2000 2000 1000 400 500 1000 200 1000 120 100 100 120 100 120 <th1< td=""><td>methane 80 80 91 2.0 200 200 200 100.0 40 50 100 100 250 230 800 0.15 210 2000 1000 40 500 100 10 250 80 800 0.19 210 2000 1000 40 500 10 10 21 250 80 80 0.19 210 2000 1000 40 50 120 10 20 250 90 30 30 0.19 21 2000 1000 40 50 120 10 20 20 90 30 30 0.19 20 2000 1000 40 50 100 25 100 25 26 90 30 30 190 20 2000 1000 40 50 10 10 25 10 26 26 26 26<</td><td>orobenzene</td><td>, 100 100</td><td>100</td><td>0</td><td>0.2</td><td>20</td><td>200 U</td><td>2000 U</td><td>100 U</td><td>4 U</td><td>┝</td><td>120 U</td><td></td><td>+</td><td>╇</td><td>11 30</td><td>0.01</td><td>0.01</td><td>12 U</td><td>-</td></th1<>	methane 80 80 91 2.0 200 200 200 100.0 40 50 100 100 250 230 800 0.15 210 2000 1000 40 500 100 10 250 80 800 0.19 210 2000 1000 40 500 10 10 21 250 80 80 0.19 210 2000 1000 40 50 120 10 20 250 90 30 30 0.19 21 2000 1000 40 50 120 10 20 20 90 30 30 0.19 20 2000 1000 40 50 100 25 100 25 26 90 30 30 190 20 2000 1000 40 50 10 10 25 10 26 26 26 26<	orobenzene	, 100 100	100	0	0.2	20	200 U	2000 U	100 U	4 U	┝	120 U		+	╇	11 30	0.01	0.01	12 U	-
230 300 2100 210 2000 1000 40 1200 100 100 100 100 100 120<	230 500 2100 200 200 200 100 4U 50U 120 1U 5U 100 25U 80 80 0.19 2U 200U 200U 100U 4U 50U 120U 1U 5U 100U 25U 80 80 0.19 2U 200U 100U 4U 5U 1U 5U 100U 25U 30 30 30 190 2U 200U 100U 4U 50U 10U 2U 2U 30 30 190 2U 200U 100U 4U 50U 10U 2U 2U	lorodibromomethane	8	8	3	44	20	200 U	2000 U	100 U	4 U		120 U	10	+	+	2511			0.21	
80 80 80 700 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	80 80 0.100 2.000 2000 U 100 U 4 U 50 U 120 U 100 U 25 U 30 30 30 190 2 U 200 U 100 U 4 U 50 U 120 U 100 U 25 U 30 30 30 190 2 U 200 U 100 U 4 U 50 U 120 U 10 U 25 U	loroethane	230	006	T	21000		7 002	2000 U	100 U	4 U		120 U	۲ ا	┢	╀	25 U	101			
30 30 30 100 20 200 2000 1000 40 500 1200 10 10 250 100 10 120 120 120 120 120 120 120 120	30 30 30 30 70 20 2000 7000 1000 40 500 110 50 100 25 0 Midele environmentation 30 30 20 2000 1000 40 50 100 25 20	loraform	80	80		2014	2 1		1 000Z	100 0	7 €		120 U	10	┢	-	25 U	╉		12 11	
		oromethane	30	30		190			0.000	1001	4 U	+	120 U	1 U		-	25 U	╋	101	╈	1.10
		Note				222	2 4	0 002		1000	4 U	\neg	120 U	10	-	-	25 U	╀		+	C 1 +

U= Not detected. Ja Organics: settimated. Inorganica; blank contamination De Organics: blank contamination. Inorganics, estimated. En Inorganics: matrix interference.

Table 5 Groundwater Quality Analyses Summary June 2009 Key Viell Sampling Event Former York !łaval Ordnance Plant - York, PA

MW-93S 6/17/2009	96		1 U	10	10	10	1.9) [10	D F	1.3	10	3 U
MW-93D 6/26/2009	23	12 U	12 U	12 U	12 U	12 U	200	12 U	12 U	12.0	240	12 U	38 U
MW-92 7/8/2009	10 U	10 U	10 U	10 U	5.1 J	10 U	240	10 U	10 U	10 U	4	10 U	30 U
MW-91 6/25/2009	10 U	10 U	10 U	10 U	1.9 J	10 U	120	10 U	10 U	10 U	20	10 U	30 U
MV-88 6/26/2009	120	25 U	25 U	25 U	25 U	25 U	16 J	25 U	25 U	25 U	380	25 U	75 U
MW-87 7/9/2009	840	100 U	100 U	1001	1 001	0.001	۲ P	200	100 U		8	100 U	300 U
MW-85 MW-87 7/1/2009 7/9/2009	53	5 U	5 U			+	┥	ۍ ۲	5 (20	50	15 U
MW-82 23/2009	29								4	2 5			30
MW-81S 7/13/2009 6	720	120 U	11001	11 001	1001		11001	1.001	1 001	0.07	N/2	1.000	300 U
MW-81D 1	230	20 C	2010	202	2011	+	-			020	2/10	╉	-
MW-79 5/22/2009	53			41	411	4 11		1 4 1	114	120			- n 7
MW-77 7/8/2009	100 (110	610	100 1	100 U	1001	190	1001	1001	1001	1001	180 1	2001
MW-75S 7/14/2009	2000 U	20001	2000 U	2000 U	2000 U	20000	2000 [J	200011	2000 U	6600	2000 11	600011	
MW-75D MW-75S 7/13/2009 7/14/2009	68 J	2001	200 U	200 U	200 U	2900	200 U	200 U	200 U	1200	200 U	600 11	
4S 009	2/	202	20	2 U	2 U	5.8	2 U	0.73 J	20	52	20	60	
→ Iter	3/U 0.43	1.5	12	4.8	1600	0.11	2300	110	0.43	1.7	0.016	200	
Federal MCL (ug/L)	2	700			100	5	1000	100		5	2	10000	
Location/ID MSC MSC MSC Sample Date Used Aquifer R Used Aquifer NR (ug/L) (ug/L) Scothere 70 (ug/L)	8	200	20	9	100	0	1000	100	26	5	2	10000	
MSC Used Aquifer R (ug/L) 70	6.6	200	20	0	100	0001	AND1	301	6.6	0	7	10000	
Location/ID Sample Date Parameter cts-1,2-Dichloroethene	cis-1.3-Dichloropropene	Activitienzene	Methylene chlorido	Styrana	Tetrachloroethene	Tolitana	trans 1.3 Dichland the		Trichloroethano	Vinut Chorido	Videoco (Totol)		

Note Blank results indicate analyte was not analyzed for. U- Not detected, Inorganica: Usank contanination, U- Organica: blank contanniation, inorganica, estimated Es finorganica: matrix interference.

APPENDIX B

Soil Sample Analytical Reports

ANALYTICAL REPORT

Job Number: 180-11688-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release. Roseann S Ruyechan Department Manager I 6/29/2012 6:25 AM

Designee for Jill L Colussy Project Manager I jill.colussy@testamericainc.com 06/29/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	11
Executive Summary	12
Method Summary	14
Method / Analyst Summary	15
Sample Datasheets	16
Surrogate Summary	33
QC Data Summary	36
Data Qualifiers	46
QC Association Summary	47
Lab Chronicle	49
Reagent Traceability	52
Certification Summary	66
Organic Sample Data	67
GC/MS VOA	67
Method 8260B	67
Method 8260B QC Summary	68
Method 8260B Sample Data	90
Standards Data	142
Method 8260B ICAL Data	142
Method 8260B CCAL Data	277
Raw QC Data	302
Method 8260B Tune Data	302

Table of Contents

Method 8260B Blank Data	326
Method 8260B LCS/LCSD Data	340
Method 8260B MS/MSD Data	364
Method 8260B Run Logs	373
Method 8260B Prep Data	379
Inorganic Sample Data	381
General Chemistry Data	381
Gen Chem Cover Page	382
Gen Chem MDL	383
Gen Chem Analysis Run Log	385
Gen Chem Prep Data	386
Shipping and Receiving Documents	387
Client Chain of Custody	388
Sample Receipt Checklist	390

CASE NARRATIVE

Client: Science Applications International Corp

Project: Harley Davidson

Report Number: 180-11688-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 06/19/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 2.6 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Naphthalene was detected in method blank MB 180-39453/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Naphthalene exceeded the RPD limit between the LCS/LCSD 180-39453/5-A. The recoveries were within control limits.

Due to the concentraiton of compounds detected, several samples were analyzed at medium level.

PERCENT SOLIDS

No difficulties were encountered during the % solids analyses.

SAMPLE SUMMARY

Client: Science Applications International Corp

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
180-11688-1	HD-B45T-MW-123-13.5/14.0-0	Solid	06/18/2012 1020	06/19/2012 1000
180-11688-2	HD-B45T-MW-123-22.6/23.1-0	Solid	06/18/2012 1040	06/19/2012 1000
180-11688-3	HD-B45T-MW-124-17.5/18.0-0	Solid	06/18/2012 1235	06/19/2012 1000
180-11688-4	HD-B45T-MW-124-30.0/30.5-0	Solid	06/18/2012 1245	06/19/2012 1000
180-11688-5	HD-B45T-MW-122-10.5/11.0-0	Solid	06/18/2012 1440	06/19/2012 1000
180-11688-6	HD-B45T-MW-122-23.3/23.8-0	Solid	06/18/2012 1520	06/19/2012 1000
180-11688-7	HD-B45T-MW-125-10.0/10.5-0	Solid	06/18/2012 1710	06/19/2012 1000
180-11688-8	HD-B45T-MW-125-21.4/21.9-0	Solid	06/18/2012 1720	06/19/2012 1000
180-11688-9	TRIP BLANK	Water	06/18/2012 0000	06/19/2012 1000

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Cli Analyte	ent Sample ID	Result	Qualifier	Reporting Limit	Units	Method
180-11688-1	HD-B45T-MW-123-13.5/1	4.0-0				
Naphthalene		2.1	JB*	5.1	ug/Kg	8260B
Percent Moisture		16	0 2	0.10	%	Moisture
Percent Solids		84		0.10	%	Moisture
180-11688-2	HD-B45T-MW-123-22.6/2	3.1-0				
Naphthalene		2.1	JB*	5.0	ug/Kg	8260B
Percent Moisture		10		0.10	%	Moisture
Percent Solids		90		0.10	%	Moisture
180-11688-3	HD-B45T-MW-124-17.5/1			000		00005
Toluene		310		280	ug/Kg	8260B
Ethylbenzene		160	J	280	ug/Kg	8260B
Xylenes, Total		580	J	840	ug/Kg	8260B
1,2,4-Trimethylbenzene		74	J	280	ug/Kg	8260B
Naphthalene		34	J	280	ug/Kg	8260B
Percent Moisture		23		0.10	%	Moisture
Percent Solids		77		0.10	%	Moisture
180-11688-4	HD-B45T-MW-124-30.0/3	0.5-0				
Methyl tert-butyl ether		110	J	230	ug/Kg	8260B
Benzene		950		230	ug/Kg	8260B
Toluene		1300		230	ug/Kg	8260B
Ethylbenzene		140	J	230	ug/Kg	8260B
Xylenes, Total		540	J	690	ug/Kg	8260B
1,2,4-Trimethylbenzene		55	J	230	ug/Kg	8260B
Naphthalene		25	J	230	ug/Kg	8260B
Percent Moisture		13		0.10	%	Moisture
Percent Solids		87		0.10	%	Moisture
180-11688-5	HD-B45T-MW-122-10.5/1					
Naphthalene		2.1	JB*	5.6	ug/Kg	8260B
Percent Moisture		17		0.10	%	Moisture
Percent Solids		83		0.10	%	Moisture
180-11688-6	HD-B45T-MW-122-23.3/2	3 8-0				
Naphthalene	1.0-0-01-0144-122-23.3/2	2.2	JB*	6.1	ug/Kg	8260B
Percent Moisture		2.2	00	0.10	%	Moisture
Percent Solids		25 75		0.10	%	Moisture
r ercent sollus		15		0.10	/0	พบเอเนเซ

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
180-11688-7	HD-B45T-MW-125-10	0/10 5-0					
Naphthalene		1.4	JB*	4.6	ug/Kg	8260B	
Percent Moisture		15	ΰĐ	0.10	%	Moisture	
Percent Solids		85		0.10	%	Moisture	
180-11688-8	HD-B45T-MW-125-21	.4/21.9-0					
Naphthalene		1.5	JB*	5.1	ug/Kg	8260B	
Percent Moisture		11		0.10	%	Moisture	
Percent Solids		89		0.10	%	Moisture	

METHOD SUMMARY

Client: Science Applications International Corp

Job Number: 180-11688-1

Description	Lab Location	Method	Preparation Method
Matrix Solid			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Closed System Purge and Trap	TAL PIT		SW846 5035
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5035
Percent Moisture	TAL PIT	EPA Moisture	
Matrix Water			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5030B

Lab References:

TAL PIT = TestAmerica Pittsburgh

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Science Applications International Corp

Method	Analyst	Analyst ID
SW846 8260B	Gordon, Kathy L	KLG
SW846 8260B	Lipay, Josh	JL
SW846 8260B	Zukowski, Mike	MZ
EPA Moisture	Wesoloski, Michael	MW

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-123-13.5/14.	0-0				
Lab Sample ID:	180-11688-1					Date Sampled: 06/18/2012 1020
Client Matrix:	Solid	% Moisture	e: 16.4			Date Received: 06/19/2012 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method:	8260B	Analysis Batch:	180-39858	Ir	strument ID:	HP3
Prep Method:	5035	Prep Batch:	180-39453	La	ab File ID:	3062217.D
Dilution:	1.0			In	nitial Weight/Volun	ne: 5.8218 g
Analysis Date:	06/22/2012 1132			F	inal Weight/Volum	ne: 5 mL
Prep Date:	06/19/2012 1624					
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Methyl tert-butyl eth	ner	5.1		U	0.77	5.1
Benzene		5.1		U	0.69	5.1
Toluene		5.1		U	0.75	5.1
Ethylbenzene		5.1		U	0.66	5.1
Xylenes, Total		15		U	2.3	15
Cumene		5.1		U	0.70	5.1
1,3,5-Trimethylbenz		5.1		U	0.69	5.1
1,2,4-Trimethylbenz	zene	5.1		U	0.67	5.1
Naphthalene		2.1		JB*	1.0	5.1
Surrogate		%Rec		Qualifier	Acc	eptance Limits
1,2-Dichloroethane-	-d4 (Surr)	76			52 -	124
Toluene-d8 (Surr)		101			72 -	127
4-Bromofluorobenz	ene (Surr)	88			63 -	120
Dibromofluorometh	ane (Surr)	89			68 -	121

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-123-22.6/23.	1-0				
Lab Sample ID: Client Matrix:	180-11688-2 Solid	% Moisture	: 10.1			Date Sampled: 06/18/2012 1040 Date Received: 06/19/2012 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS	5)	
Analysis Method:	8260B	Analysis Batch:	180-39858		Instrument ID:	HP3
Prep Method:	5035	Prep Batch:	180-39453		Lab File ID:	3062218.D
Dilution:	1.0				Initial Weight/Volu	ime: 5.5495 g
Analysis Date:	06/22/2012 1155				Final Weight/Volu	me: 5 mL
Prep Date:	06/19/2012 1624					
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Methyl tert-butyl eth	ner	5.0		U	0.75	5.0
Benzene		5.0		U	0.68	5.0
Toluene		5.0		U	0.73	5.0
Ethylbenzene		5.0		U	0.64	5.0
Xylenes, Total		15		U	2.2	15
Cumene		5.0		U	0.68	5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.67	5.0
1,2,4-Trimethylbenz	zene	5.0		U	0.65	5.0
Naphthalene		2.1		JB*	1.0	5.0
Surrogate		%Rec		Qualifier	Ace	ceptance Limits
1,2-Dichloroethane-	-d4 (Surr)	79			52	- 124
Toluene-d8 (Surr)		103			72	- 127
4-Bromofluorobenzo	ene (Surr)	91				- 120
Dibromofluorometha	ane (Surr)	92			68	- 121

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-124-17.5/18.	0-0				
Lab Sample ID: Client Matrix:	180-11688-3 Solid	% Moisture	: 22.5			Date Sampled: 06/18/2012 1235 Date Received: 06/19/2012 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS)		
Analysis Method:	8260B	Analysis Batch:	180-39692	In	strument ID:	HP4
Prep Method:	5035	Prep Batch:	180-39458	La	ab File ID:	4062210.D
Dilution:	1.0			In	itial Weight/Volum	e: 5.7792 g
Analysis Date:	06/22/2012 0611			Fi	inal Weight/Volume	e: 5 mL
Prep Date:	06/19/2012 1813				-	
Analyte	DryWt Corrected: Y	Result (ug	g/Kg)	Qualifier	MDL	RL
Methyl tert-butyl eth	ner	280		U	57	280
Benzene		280		U	55	280
Toluene		310			47	280
Ethylbenzene		160		J	35	280
Xylenes, Total		580		J	110	840
Cumene		280		U	30	280
1,3,5-Trimethylbenz		280		U	33	280
1,2,4-Trimethylbenz	zene	74		J	29	280
Naphthalene		34		J	26	280
Surrogate		%Rec		Qualifier	Acce	ptance Limits
1,2-Dichloroethane-	-d4 (Surr)	74			52 - 1	124
Toluene-d8 (Surr)		96			72 - 1	127
4-Bromofluorobenzo	ene (Surr)	91			63 - 1	120
Dibromofluorometha	ane (Surr)	87			68 - 1	121

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-124-30.0/30.	5-0				
Lab Sample ID: Client Matrix:	180-11688-4 Solid	% Moisture	: 13.3			Date Sampled: 06/18/2012 1245 Date Received: 06/19/2012 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS	5)	
Analysis Method:	8260B	Analysis Batch:	180-39692		Instrument ID:	HP4
Prep Method:	5035	Prep Batch:	180-39458		Lab File ID:	4062211.D
Dilution:	1.0				Initial Weight/Volu	ıme: 6.3081 g
Analysis Date:	06/22/2012 0641				Final Weight/Volu	me: 5 mL
Prep Date:	06/19/2012 1813					
		– <i>– – – – – – – – – –</i>		0 11		5
Analyte	DryWt Corrected: Y	Result (ug	g/Kg)	Qualifier		RL
Methyl tert-butyl eth	er	110		J	47	230
Benzene		950			45	230
Toluene		1300			39	230
Ethylbenzene		140		J	28	230
Xylenes, Total		540		J	90	690
Cumene		230		U	24	230
1,3,5-Trimethylbenz	ene	230		U	27	230
1,2,4-Trimethylbenz	ene	55		J	24	230
Naphthalene		25		J	22	230
Surrogate		%Rec		Qualifier	Ac	ceptance Limits
1,2-Dichloroethane-	d4 (Surr)	70			52	- 124
Toluene-d8 (Surr)		96			72	- 127
4-Bromofluorobenze	ene (Surr)	92			63	- 120
Dibromofluorometha		85			68	- 121

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-122-10.5/11.	0-0					
Lab Sample ID:	180-11688-5					Date Sampled: 06/18	
Client Matrix:	Solid	% Moisture	: 17.2			Date Received: 06/19	/2012 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS	5)		
Analysis Method:	8260B	Analysis Batch:	180-39858		Instrument ID:	HP3	
Prep Method:	5035	Prep Batch:	180-39453		Lab File ID:	3062219.D	
Dilution:	1.0				Initial Weight/Volu	me: 5.3618 g	
Analysis Date:	06/22/2012 1217				Final Weight/Volu	me: 5 mL	
Prep Date:	06/19/2012 1624						
Analyte	DryWt Corrected: Y	Result (u	n/Ka)	Qualifier	MDL	RL	
Methyl tert-butyl eth	,	5.6	g/itg)	U	0.84	5.6	
Benzene		5.6		U	0.76	5.6	
Toluene		5.6		U	0.82	5.6	
Ethylbenzene		5.6		U	0.72	5.6	
Xylenes, Total		17		U	2.5	17	
Cumene		5.6		U	0.76	5.6	
1,3,5-Trimethylbenz	zene	5.6		U	0.75	5.6	
1,2,4-Trimethylbenz	zene	5.6		U	0.73	5.6	
Naphthalene		2.1		JB*	1.1	5.6	
Surrogate		%Rec		Qualifier	Ace	ceptance Limits	
1,2-Dichloroethane-	-d4 (Surr)	78			52	- 124	
Toluene-d8 (Surr)		101			72	- 127	
4-Bromofluorobenzo	ene (Surr)	93				- 120	
Dibromofluorometha	ane (Surr)	93			68	- 121	

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-122-23.3/23.	8 -0					
Lab Sample ID:	180-11688-6					Date Sampled: 06/18/2012	
Client Matrix:	Solid	% Moisture	: 25.1			Date Received: 06/19/2012	2 1000
	8	260B Volatile Orga	nic Compound	ds (GC/MS	;)		
Analysis Method:	8260B	Analysis Batch:	180-39858	I	Instrument ID:	HP3	
Prep Method:	5035	Prep Batch:	180-39453	I	Lab File ID:	3062220.D	
Dilution:	1.0			l	Initial Weight/Volu	me: 5.4639 g	
Analysis Date:	06/22/2012 1241			I	Final Weight/Volu	me: 5 mL	
Prep Date:	06/19/2012 1624						
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
Methyl tert-butyl eth	ner	6.1		U	0.91	6.1	
Benzene		6.1		U	0.82	6.1	
Toluene		6.1		U	0.89	6.1	
Ethylbenzene		6.1		U	0.78	6.1	
Xylenes, Total		18		U	2.7	18	
Cumene		6.1		U	0.83	6.1	
1,3,5-Trimethylbenz		6.1		U	0.82	6.1	
1,2,4-Trimethylbenz	zene	6.1		U	0.79	6.1	
Naphthalene		2.2		JB*	1.2	6.1	
Surrogate		%Rec		Qualifier	Ace	ceptance Limits	
1,2-Dichloroethane	-d4 (Surr)	86			52	- 124	
Toluene-d8 (Surr)		102			72	- 127	
4-Bromofluorobenz	ene (Surr)	95			63	- 120	
Dibromofluorometh	ane (Surr)	98			68	- 121	

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-125-10.0/10.	5-0					
Lab Sample ID: Client Matrix:	180-11688-7 Solid	% Moisture	: 15.1			Date Sampled: 06/18/20 Date Received: 06/19/20	
	8	260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-39858		Instrument ID:	HP3	
Prep Method:	5035	Prep Batch:	180-39453		Lab File ID:	3062221.D	
Dilution:	1.0				Initial Weight/Volu	me: 6.4151 g	
Analysis Date:	06/22/2012 1305				Final Weight/Volu	me: 5 mL	
Prep Date:	06/19/2012 1624						
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	- MDL	RL	
Methyl tert-butyl eth	ier	4.6		U	0.69	4.6	
Benzene		4.6		U	0.62	4.6	
Toluene		4.6		U	0.67	4.6	
Ethylbenzene		4.6		U	0.59	4.6	
Xylenes, Total		14		U	2.1	14	
Cumene		4.6		U	0.62	4.6	
1,3,5-Trimethylbenz		4.6		U	0.61	4.6	
1,2,4-Trimethylbenz	zene	4.6		U	0.60	4.6	
Naphthalene		1.4		JB*	0.92	4.6	
Surrogate		%Rec		Qualifier	- Ac	ceptance Limits	
1,2-Dichloroethane-	-d4 (Surr)	80			52	- 124	
Toluene-d8 (Surr)		106			72	- 127	
4-Bromofluorobenzo	ene (Surr)	90				- 120	
Dibromofluorometha	ane (Surr)	95			68	- 121	

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-125-21.4/21.	9-0					
Lab Sample ID: Client Matrix:	180-11688-8 Solid	% Moisture	: 11.5			Date Sampled: 06/18/2012 17 Date Received: 06/19/2012 10	
	8	260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-39858		Instrument ID:	HP3	
Prep Method:	5035	Prep Batch:	180-39453		Lab File ID:	3062222.D	
Dilution:	1.0				Initial Weight/Volu	ıme: 5.5316 g	
Analysis Date:	06/22/2012 1330				Final Weight/Volu	me: 5 mL	
Prep Date:	06/19/2012 1624						
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	m MDL	RL	
Methyl tert-butyl eth	er	5.1		U	0.76	5.1	
Benzene		5.1		U	0.69	5.1	
Toluene		5.1		U	0.75	5.1	
Ethylbenzene		5.1		U	0.66	5.1	
Xylenes, Total		15		U	2.3	15	
Cumene		5.1		U	0.69	5.1	
1,3,5-Trimethylbenz		5.1		U	0.68	5.1	
1,2,4-Trimethylbenz	ene	5.1		U	0.66	5.1	
Naphthalene		1.5		JB*	1.0	5.1	
Surrogate		%Rec		Qualifie	Acc	ceptance Limits	
1,2-Dichloroethane-	d4 (Surr)	79			52	- 124	
Toluene-d8 (Surr)		101			72	- 127	
4-Bromofluorobenze		88				- 120	
Dibromofluorometha	ane (Surr)	87			68	- 121	

Client: Science Applications International Corp

Client Sample ID:	TRIP BLANK						
Lab Sample ID: Client Matrix:	180-11688-9 Water						06/18/2012 0000 : 06/19/2012 1000
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 06/23/2012 2009 06/23/2012 2009	Analysis Batch: Prep Batch:	180-39841 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur		28.D
Analyte		Result (u	g/L)	Qualifie	r MDL	R	L
Benzene		5.0		U	0.99	5.	0
Toluene		5.0		U	0.85	5.	0
Ethylbenzene		5.0		U	0.62	5.	0
Xylenes, Total		15		U	2.0	1	5
Cumene		5.0		U	0.53	5.	0
Methyl tert-butyl eth	er	5.0		U	1.0	5.	0
1,2,4-Trimethylbenz		5.0		U	0.52	5.	
1,3,5-Trimethylbenz	ene	5.0		U	0.59	5.	
Naphthalene		5.0		U	0.47	5.	0
Surrogate		%Rec		Qualifie	r Acc	ceptance Limits	
1,2-Dichloroethane-	d4 (Surr)	110			62	- 123	
Toluene-d8 (Surr)		96			80	- 120	
4-Bromofluorobenze	ene (Surr)	96			75	- 120	
Dibromofluorometha	ane (Surr)	112			80	- 120	

General Chemistry										
Client Sample ID:	HD-B45T-MW-123-13.5	5/14.0-0								
Lab Sample ID: Client Matrix:	180-11688-1 Solid					•	ed: 06/18/2012 1020 red: 06/19/2012 1000			
Analyte	Res	ult Qual	Units	MDL	RL	Dil	Method			
Percent Moisture	16 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			
Percent Solids	84 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			

General Chemistry											
Client Sample ID:	HD-B45T-MW-123-22	.6/23.1-0									
Lab Sample ID: Client Matrix:	180-11688-2 Solid						ed: 06/18/2012 1040 red: 06/19/2012 1000				
Analyte	Re	sult Qual	Units	MDL	RL	Dil	Method				
Percent Moisture	10 Analysis Batch: 180-39433	3 Analysis Date	% e: 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N				
Percent Solids	90 Analysis Batch: 180-39433	3 Analysis Date	% e: 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N				

General Chemistry										
Client Sample ID:	HD-B45T-MW-124-	17.5/18.0-0								
Lab Sample ID: Client Matrix:	180-11688-3 Solid							ed: 06/18/2012 1235 ved: 06/19/2012 1000		
Analyte	F	Result	Qual	Units	MDL	RL	Dil	Method		
Percent Moisture	2 Analysis Batch: 180-394	23 -33 Ani	alysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N		
Percent Solids	7 Analysis Batch: 180-394	77 -33 Ana	alysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N		

General Chemistry										
Client Sample ID:	HD-B45T-MW-124-30.0	0/30.5-0								
Lab Sample ID: Client Matrix:	180-11688-4 Solid						ed: 06/18/2012 1245 red: 06/19/2012 1000			
Analyte	Res	ult Qual	Units	MDL	RL	Dil	Method			
Percent Moisture	13 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			
Percent Solids	87 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			

General Chemistry										
Client Sample ID:	HD-B45T-MW-122-10	.5/11.0-0								
Lab Sample ID: Client Matrix:	180-11688-5 Solid						ed: 06/18/2012 1440 red: 06/19/2012 1000			
Analyte	Re	sult Qual	Units	MDL	RL	Dil	Method			
Percent Moisture	17 Analysis Batch: 180-39433	3 Analysis Date	% : 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			
Percent Solids	83 Analysis Batch: 180-39433	3 Analysis Date	% : 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N			

Job Number: 180-11688-1

General Chemistry													
Client Sample ID:	HD-B45T-MW-122-	23.3/23.8-	0										
Lab Sample ID: Client Matrix:	180-11688-6 Solid							ed: 06/18/2012 1520 ved: 06/19/2012 1000					
Analyte	I	Result	Qual	Units	MDL	RL	Dil	Method					
Percent Moisture	Analysis Batch: 180-394	25 133	Analysis Date:	% 06/19/2012	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N					
Percent Solids	Analysis Batch: 180-394	75 33	Analysis Date:	% 06/19/2012	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N					

Job Number: 180-11688-1

General Chemistry													
Client Sample ID:	HD-B45T-MW-125-10.0/	10.5-0											
Lab Sample ID: Client Matrix:	180-11688-7 Solid						ed: 06/18/2012 1710 red: 06/19/2012 1000						
Analyte	Resu	lt Qual	Units	MDL	RL	Dil	Method						
Percent Moisture	15 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N						
Percent Solids	85 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N						

Job Number: 180-11688-1

General Chemistry													
Client Sample ID:	HD-B45T-MW-125-21.	.4/21.9-0											
Lab Sample ID: Client Matrix:	180-11688-8 Solid						ed: 06/18/2012 1720 ved: 06/19/2012 1000						
Analyte	Res	sult Qual	Units	MDL	RL	Dil	Method						
Percent Moisture	11 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N						
Percent Solids	89 Analysis Batch: 180-39433	Analysis Date:	% 06/19/201	0.10 2 1433	0.10	1.0	Moisture DryWt Corrected: N						

Job Number: 180-11688-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-11688-1	HD-B45T-MW-123-13 .5/14.0-0	89	76	101	88
180-11688-2	HD-B45T-MW-123-22 .6/23.1-0	92	79	103	91
180-11688-5	HD-B45T-MW-122-10 .5/11.0-0	93	78	101	93
180-11688-6	HD-B45T-MW-122-23 .3/23.8-0	98	86	102	95
180-11688-7	HD-B45T-MW-125-10 .0/10.5-0	95	80	106	90
180-11688-8	HD-B45T-MW-125-21 .4/21.9-0	87	79	101	88
MB 180-39453/1-A		91	90	97	89
LCS 180-39453/3-A		96	88	97	88
LCSD 180-39453/5-A		98	92	102	96

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	68-121
DCA = 1,2-Dichloroethane-d4 (Surr)	52-124
TOL = Toluene-d8 (Surr)	72-127
BFB = 4-Bromofluorobenzene (Surr)	63-120

Job Number: 180-11688-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-11688-3	HD-B45T-MW-124-17 .5/18.0-0	87	74	96	91
180-11688-4	HD-B45T-MW-124-30 .0/30.5-0	85	70	96	92
MB 180-39458/1-A		88	73	120	100
LCS 180-39458/2-A		86	72	96	91
LCSD 180-39458/3-A		88	70	96	94

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	68-121
DCA = 1,2-Dichloroethane-d4 (Surr)	52-124
TOL = Toluene-d8 (Surr)	72-127
BFB = 4-Bromofluorobenzene (Surr)	63-120

Job Number: 180-11688-1

Surrogate Recovery Report

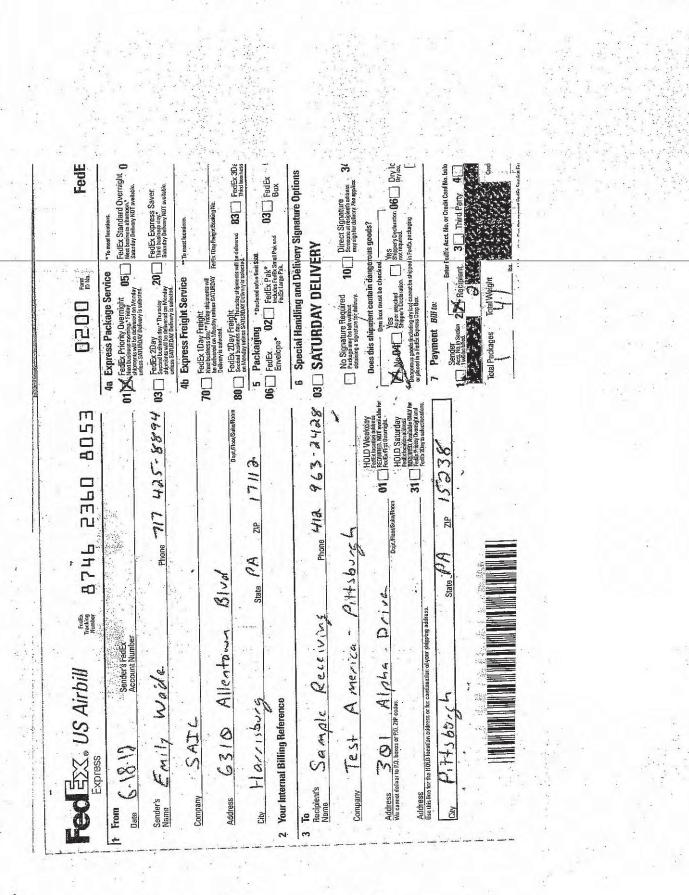
8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-11688-9	TRIP BLANK	112	110	96	96
MB 180-39841/4		109	110	99	95
LCS 180-39841/7		104	103	101	97
180-11802-E-3 MS		106	105	106	100
180-11802-E-3 MSD		106	105	107	98

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-123
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	75-120

Job Number: 180-11688-1


Client: Science Applications International Corp

Method Blank - Batch: 180-39453

				Пера	ation: 5055		
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 180-39453/1-A Solid 1.0 06/22/2012 0638 06/19/2012 1624 N/A	Prep Batch: 180-39453 Lab File II Leach Batch: N/A Initial Wei 2/2012 0638 Units: ug/Kg Final Weig			HP3 3062205.D 4.9996 g 5 mL		
Analyte		Res	ult	Qual	MDL	RL	
Benzene		5.0		U	0.68	5.0	
Toluene		5.0		U	0.73	5.0	
Methyl tert-butyl et	ther	5.0		U	0.75	5.0	
Ethylbenzene		5.0		U	0.64	5.0	
Xylenes, Total		15		U	2.2	15	
Cumene		5.0		U	0.68	5.0	
1,3,5-Trimethylber	nzene	5.0		U	0.67	5.0	
1,2,4-Trimethylber	nzene	5.0		U	0.65	5.0	
Naphthalene		4.54	Ļ	J	1.0	5.0	
Surrogate		%	Rec		Acceptance Lim	nits	
1,2-Dichloroethane	e-d4 (Surr)	ç	90		52 - 124		
Toluene-d8 (Surr)		g	97		72 - 127		
4-Bromofluoroben		8	39		63 - 120		
Dibromofluoromet	hane (Surr)	ç	91		68 - 121		
Toluene-d8 (Surr) 4-Bromofluoroben	zene (Surr)	8	39		63 - 120		

Method: 8260B Preparation: 5035

Shipping and Receiving Documents

														0	36	ĴΟ	68	e 3	6e9	[_											
•	IESTAMERICO THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica Laboratories, Inc.	TAPB	10		-	Container No	SDG No.			Comple Cossific Marco	variable opportunity voices.				-								han 1 month)	Months			Date/Time:	Date/Time:		Date/Fime:	
F			6/18/2012					u. <u></u> .															4 4 4	N Y N	hive For			1				
			Date Submitted:				-				· · · · ·												4 4 4	Y N Y N Y Second field Y <thy< th=""> <thy< th=""> <thy< th=""> <thy<< td=""><td>Disposal By Lab</td><td></td><td></td><td>Company</td><td>Company:</td><td>Commenter</td><td>Company:</td><td>-</td></thy<<></thy<></thy<></thy<>	Disposal By Lab			Company	Company:	Commenter	Company:	-
	Chain of Custody Record		Lab Contact: Carrie Gamber								05104C82) blio2 leto T		X X									-	6 4 6 6 5 5 6 4 	N Y Y Y N Y Y Y Y Y Y Y Y Y Y	Return To Client X Dispo	Project Specific Analyte Lists		Received by Hed-Ex	Received by	Received hv:	· for marine	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11688	Chai	<u></u>	02 I		-			<u>O 181</u>	11:101	<u>19 19</u>	Matrix Cont. AD	4	4	4	Soil 4 X	Soil 4 X	Soil 4 X	4	Soil 4 X	Water 2 X	Water 1		ved 7=Na2S2O3 2	Field Filter N	Unknown	Project Spe		Date/Time: 06/18/2012/ VRaf	Date/Time:	Date/Time:		
P) X.	H	Adnay Myore	139 / 717-901-81	Analysis Turnaround Time	Work Days (W)	TAT if different from Below: Standard	2 weeks	1 week	2 days	I day	Sample Type	Soil Boring	Soil Boring	Soil Boring	Soil Boring	Soil Boring	Soil Boring	Soil Boring	Soil Boring	Trip Blank	Temp Blank		5=NaOH; 6= Unpreserv									
×.	a	Project Manager, Rodnay Myore	Tel/Fax: 717-468-1439 / 717-901-81	Analysi	Calendar (C) or Work Days (W)	TAT if diff					Sample Sample Date Time	6/18/2012 10:20	6/18/2012 10:40	6/18/2012 12:35	6/18/2012 12:45	6/18/2012 14:40	6/18/2012 15:20	6/18/2012 17:10	6/18/2012 17:20	6/11/2012 18:00	6/18/2012 18:00				ritant D	CLP Like De	1	Company: SAIC	Company:	Company:		بيمثلا فالمحالية
TestAmerica Pittsburgh 301 Alpha Drive	Pittsburgh, PA 15238 Pittsburgh, PA 15238 phone 412,963.7058 fax 412 963 2470	ſ	International Corp. (SAIC)	6310 Allentown Blvd.	Harrisburg, PA 17112	(717) 901 - 8100 Phone	(717) 901-8102 FAX	Project Name: HD Bldg 45 UST Characterization	Site: York PA		Sample Identification	HD-B45T-MW-123-13.5/14.0-0 6/1	HD-B45T-MW-123-22.6/23.1-0 6/1	HD-B45T-MW-124-17.5/18.0-0	HD-B45T-MW-124-30.0/30.5-0 6/1	HD-B45T-MW-122-10.5/11.0-0 6/1	HD-B45T-MW-122-23.3/23.8-0 6/1	HD-B45T-MW-125-10.0/10.5-0	HD-B45T-MW-125-21.4/21.9-0 · 6/1	Trip Blank 1 6/1	Temp Blank 1 6/1		Freservation Used: A= Ice, 2= HCJ; 3= H2SO4; 4=HNO3;	entification	Non-Hazard Flammable Skin Irritant	Spectal Instructions/QC Requirements & Comments: CLP Like Deliverables,		A LEVEL AND A LEVEL	Relinquished by:	Relinquished by: Cor		

Page 389 of 390

Client: Science Applications International Corp

Login Number: 11688 List Number: 1

Creator:	Gamber,	Tom
----------	---------	-----

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-11688-1

List Source: TestAmerica Pittsburgh

ANALYTICAL REPORT

Job Number: 180-14086-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release Jill L Colussy Project Manager I 9/25/2012 1:19 PM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 09/25/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	12
Executive Summary	13
Method Summary	14
Method / Analyst Summary	15
Sample Datasheets	16
Surrogate Summary	21
QC Data Summary	23
Data Qualifiers	30
QC Association Summary	31
Lab Chronicle	32
Reagent Traceability	34
Certification Summary	45
Organic Sample Data	46
GC/MS VOA	46
Method 8260B	46
Method 8260B QC Summary	47
Method 8260B Sample Data	61
Standards Data	81
Method 8260B ICAL Data	81
Method 8260B CCAL Data	228
Raw QC Data	249
Method 8260B Tune Data	249

Table of Contents

Method 8260B Blank Data	265
Method 8260B LCS/LCSD Data	274
Method 8260B Run Logs	294
Method 8260B Prep Data	298
Inorganic Sample Data	299
General Chemistry Data	299
Gen Chem Cover Page	300
Gen Chem MDL	301
Gen Chem Analysis Run Log	303
Gen Chem Prep Data	304
Shipping and Receiving Documents	305
Client Chain of Custody	306
Sample Receipt Checklist	308

CASE NARRATIVE

Client: Science Applications International Corp

Project: Harley Davidson

Report Number: 180-14086-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 09/05/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.7 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Naphthalene was detected in the method blank at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

The relative percent difference between the laboratory control standard and the laboratory control duplicate was outside of the control limits for naphthalene. All recoveries were within the control limits.

PERCENT SOLIDS

No difficulties were encountered during the % solids analysis.

SAMPLE SUMMARY

Client: Science Applications International Corp

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
180-14086-1	HD-B45T-MW-160-20.0-20.5-0	Solid	09/04/2012 0940	09/05/2012 1000
180-14086-2	HD-B45T-MW-160-36.0-36.5-0	Solid	09/04/2012 1130	09/05/2012 1000
180-14086-3	TRIP BLANK 1	Water	08/29/2012 1800	09/05/2012 1000

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method	
180-14086-1	HD-B45T-MW-160-20	.0-20.5-0					
Naphthalene		1.1	JB*	4.9	ug/Kg	8260B	
Percent Moisture		18		0.10	%	Moisture	
180-14086-2	HD-B45T-MW-160-36	0 26 5 0					
Benzene	HD-B451-WW-100-30	3.6	J	5.3	ug/Kg	8260B	
Toluene		0.78	J	5.3	ug/Kg	8260B	
Naphthalene		1.8	JB*	5.3	ug/Kg	8260B	
Percent Moisture		23		0.10	%	Moisture	

METHOD SUMMARY

Client: Science Applications International Corp

Job Number: 180-14086-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5035
Percent Moisture	TAL PIT	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5030B
Purge and Trap	TAL PIT		SW846 5030B

Lab References:

TAL PIT = TestAmerica Pittsburgh

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260B SW846 8260B	Gordon, Kathy L Journet, Patrick	KLG PJ
EPA Moisture	Kunkle, Sarah	SK

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-160-20.0-20.	5-0					
Lab Sample ID: Client Matrix:	180-14086-1 Solid	% Moisture	: 18.3			Date Sampled: 09/04/2012 Date Received: 09/05/2012	
	8	260B Volatile Orga	nic Compound	ds (GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 09/07/2012 1022 09/05/2012 1411	Analysis Batch: Prep Batch:	180-47590 180-47362	L	nstrument ID: ab File ID: nitial Weight/Volur inal Weight/Volun	0	
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
Methyl tert-butyl eth	ier	4.9		U	0.73	4.9	
Benzene		4.9		U	0.66	4.9	
Toluene		4.9		U	0.71	4.9	
Ethylbenzene		4.9		U	0.63	4.9	
Xylenes, Total		15		U	2.2	15	
Cumene		4.9		U	0.66	4.9	
1,3,5-Trimethylbenz	zene	4.9		U	0.65	4.9	
1,2,4-Trimethylbenz	zene	4.9		U	0.64	4.9	
Naphthalene		1.1		JB*	0.98	4.9	
Surrogate		%Rec		Qualifier	Acc	ceptance Limits	
1,2-Dichloroethane-	-d4 (Surr)	107			52 -	- 124	
Toluene-d8 (Surr)		101				- 127	
4-Bromofluorobenzo	ene (Surr)	98			63 -	- 120	
Dibromofluorometha	ane (Surr)	108			68 -	- 121	

Client: Science Applications International Corp

Client Sample ID:	HD-B45T-MW-160-36.0-36.	5-0					
Lab Sample ID: Client Matrix:	180-14086-2 Solid	% Moisture	: 23.0			Date Sampled: 09/04/2012 Date Received: 09/05/2012	
	8	260B Volatile Orga	nic Compound	ds (GC/MS	5)		
Analysis Method:	8260B	Analysis Batch:	180-47590		Instrument ID:	HP3	
Prep Method:	5035	Prep Batch:	180-47362		Lab File ID:	3090714.D	
Dilution:	1.0				Initial Weight/Volu	me: 6.0661 g	
Analysis Date:	09/07/2012 1000				Final Weight/Volu	me: 5 mL	
Prep Date:	09/05/2012 1411						
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	r MDL	RL	
Methyl tert-butyl eth	er	5.3		U	0.80	5.3	
Benzene		3.6		J	0.72	5.3	
Toluene		0.78		J	0.78	5.3	
Ethylbenzene		5.3		U	0.69	5.3	
Xylenes, Total		16		U	2.4	16	
Cumene		5.3		U	0.73	5.3	
1,3,5-Trimethylbenz	ene	5.3		U	0.71	5.3	
1,2,4-Trimethylbenz	ene	5.3		U	0.70	5.3	
Naphthalene		1.8		JB*	1.1	5.3	
Surrogate		%Rec		Qualifier	r Ac	ceptance Limits	
1,2-Dichloroethane-	d4 (Surr)	88			52	- 124	
Toluene-d8 (Surr)		102				- 127	
4-Bromofluorobenze	ene (Surr)	94			63	- 120	
Dibromofluorometha	ane (Surr)	98			68	- 121	

Client: Science Applications International Corp

Client Sample ID:	TRIP BLANK 1						
Lab Sample ID: Client Matrix:	180-14086-3 Water					•	ed: 08/29/2012 1800 ved: 09/05/2012 1000
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 09/06/2012 2304 09/06/2012 2304	Analysis Batch: Prep Batch:	180-47545 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur	me: 5 r	4 06N26.D nL nL
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth		5.0		U	1.0		5.0
1,2,4-Trimethylbenz		5.0		U	0.52		5.0
1,3,5-Trimethylbenz	ene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	er Ace	ceptance Lin	nits
1,2-Dichloroethane-	d4 (Surr)	85			62	- 123	
Toluene-d8 (Surr)		102			80	- 120	
4-Bromofluorobenz	ene (Surr)	92			75	- 120	
Dibromofluorometh	ane (Surr)	105			80	- 120	

General Chemistry								
Client Sample ID:	HD-B45T-MW-16	0-20.0-20.	5-0					
Lab Sample ID: Client Matrix:	180-14086-1 Solid						•	d: 09/04/2012 0940 d: 09/05/2012 1000
Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Percent Moisture		18		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 180-4	7531	Analysis Date:	09/06/2012	2 1544			DryWt Corrected: N

General Chemistry								
Client Sample ID:	HD-B45T-MW-160-	36.0-36.5	-0					
Lab Sample ID: Client Matrix:	180-14086-2 Solid						•	ed: 09/04/2012 1130 ed: 09/05/2012 1000
Analyte	F	Result	Qual	Units	MDL	RL	Dil	Method
Percent Moisture	2 Analysis Batch: 180-475	23 31	Analysis Date:	% 09/06/2012	0.10 2 1544	0.10	1.0	Moisture DryWt Corrected: N

Job Number: 180-14086-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-14086-1	HD-B45T-MW-160-20 .0-20.5-0	108	107	101	98
180-14086-2	HD-B45T-MW-160-36 .0-36.5-0	98	88	102	94
MB 180-47362/1-A		97	97	100	89
LCS 180-47362/3-A		102	94	97	92
LCSD 180-47362/5-A		103	98	102	95

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	68-121
DCA = 1,2-Dichloroethane-d4 (Surr)	52-124
TOL = Toluene-d8 (Surr)	72-127
BFB = 4-Bromofluorobenzene (Surr)	63-120

Job Number: 180-14086-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-14086-3	TRIP BLANK 1	105	85	102	92
MB 180-47545/3		98	94	110	98
LCS 180-47545/4		103	91	105	102
LCSD 180-47545/5		104	95	109	106

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-123
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	75-120

Job Number: 180-14086-1

Client: Science Applications International Corp

Method Blank - Batch: 180-47362

				opui			
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 180-47362/1-A Solid 1.0 09/07/2012 0659 09/05/2012 1411 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	180-47590 180-47362 N/A ug/Kg			HP3 3090706.D 5.0000 g 5 mL	
Analyte		Res	ult	Qual	MDL	RL	
Benzene		5.0		U	0.68	5.0	
Toluene		5.0		U	0.73	5.0	
Methyl tert-butyl ef	ther	5.0		U	0.75	5.0	
Ethylbenzene		5.0		U	0.64	5.0	
Xylenes, Total		15		U	2.2	15	
Cumene		5.0		U	0.68	5.0	
1,3,5-Trimethylber	izene	5.0		U	0.67	5.0	
1,2,4-Trimethylber	izene	5.0		U	0.65	5.0	
Naphthalene		2.98	3	J	1.0	5.0	
Surrogate		%	Rec		Acceptance Lim	nits	
1,2-Dichloroethane	e-d4 (Surr)	ç	97		52 - 124		
Toluene-d8 (Surr)		1	00		72 - 127		
4-Bromofluoroben	zene (Surr)	8	39		63 - 120		
Dibromofluoromet	hane (Surr)	g	97		68 - 121		

Preparation: 5035

Method: 8260B

Shipping and Receiving Documents

Dry Ice FedEx FedEx 3Day Fi Third susiness day? 6 FedEx Part* 3 FedEx Box 4 No Signature Required 10 Direct Signature and the second and the second structure of the second struct
 4.a Express Package Service
 • To nost locations.

 1.a.f. FedEx Priority Overnight
 5

 1.a.f. FedEx Priority Overnight
 5
 Guide for de credit Card 6 Special Handling and Delivery Signature Options FedEx 2Day second business leaver 1 hurdary 20 Third business Gaver adjammary business day. I much who they unless SATINDAR Delivery is subjected. FedEx 2Day Freight Second business days "Thursday stipments will be delivered 83 on Monday unless SATURDAY Delivery is scherled. FedEx 1Day Freigist Nox business day "Freigist bo devices Stribbase val behaves a selement Enter FedEx Acct. No. or Cre 4b Express Freight Service ... Ta mast locations. Does this shipment contain dangerous goods? One hox must be checked Dangaraus goads finctucling dry ice) cannot be shipped in FordEx packag or Naced in a FedEx Express Drop 8 cx. **3 SATURDAY DELIVERY** Form 10 No: No 4 2 Subject and the sheeked and the sheeked and the state of the sheet of the sh Declared value limit \$500. 0500 7 Payment Bill to: 5 Packaging otal Paskage. Our liability is limited 2 2 0 7 2 0 M688-SCH LIL Dept./Floor/Suite/Room company Est America PHSburgh 1 merenane na Housen Housen Herenane na Herenane n Herenane na 4446-898 33 6112 ~ Phone 413 ZIP 8709 Phon<u>e</u> State PA ų, BUD tate Address 301 Alpha Drive We cannot addroy to P.D. boxis or P.D. 200 6310 Allentown Receiving Sender's FedEx Account Number Sender's Emily Wade Fedex .. US Airbill Acidress Print FodEx location address here if a HOLD option is selected 2 Your Internal Billing Reference ow Harrisburg SATC Recipients Sample riftsburgettig 11 From 9 . 4. 19 Address Company Ciβ 3 To 9555.534.008.1 x3b97o2.008.1 moo.x9b91

Page 306 of 308

301 Alpha Drive	- 20-			ł		i			•						estAmerica		
Pittsburgh, PA 15238				5	ain	Chain of Custody Record	[ody]	Reco	P					╸■ ⊢	THE LEADER IN ENVIRONMENTAL TESTING	INMENTAL TESTING	
phone 412.963.7058 fax 412.963.2470													-		TestAmeric	TestAmerica Laboratories. Inc.	
	Project Manager: Rodney Myers	: Rodney Myers			Site (Site Contact: Emily Wade	ly Wade				Date Su	Date Submitted:	<u> </u>	9/4/2012		COC No: TAP090420121	r -
Science Applications International Corp. (SAIC) 6310 Allontourin Blud	Tel/Fax: 717-468-1439 / 717-901	8-1439 / 717-901	1-8102		Lab	Lab Contact: Carrie Gamber	rie Gamb	Cr		Ö,	Carrier:					_1 COCs	
	Ana	Analysis Lurnaround Lime	Lime	ľ	-										Job No.		
(717) 901 - 8100 Dhone	Calendar (C)	Calendar (C) or Work Days (W)			a I							-					
		TAT if different from Below: Standard	Standard		ðDRa							-					
(/1/) 901-8102 Protect Name: HD Bldg 45 11ST Characterization][2 weeks			ม่ตม										Container No.		-
Site: York PA		1 week			15113.1										SDG No.		
Quote # 18009897-0		2 days 1 day			045 1												
Sample Identification	Sample Sample Date Time		e Matrix	ix Kont.	ANDACE SU SURA (SU SURA) Solio2 Isto'l											and the second	-
HD-B45T-MW-160-20.0-20.5-0	9/4/2012 9:40	<u>ti</u>	Soil	4	×	×										contraction advanta	<u></u>
HD-B45TI-MW-160-36.0-36.5-0	9/4/2012 11:30	—	<u> </u>	4	×	×					-	-					1
Trip Blank I	8/29/2012 18:00		Water	r 2	×												T
Temp Blank 1	9/4/2012 18:00		c Water	ч ч													1
											_	-					Т
					<u> </u>							+	-				—
			.										-				
										-			_				
				ļ.							-						
																	<u> </u>
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4	3= H2SO4; 4=HNO3; 5=NaOH; 6= Unpreserved 7=Na2S2O3	aOH; 6= Unpres	erved 7=	Na2S2O	3 2 6	46	in.	9	44	4	4 4	4	4	4	4		Т
1			H	Field Filter N		NYN	Y N N	z	ΥN	Y	ΝY	N	Y N	X	z		
r ossupe nazara taeniyicanon Non-Hazard Elammable	Skin Irritant				<u>ر</u>	Imple Disposal (A 1 Return To Client	osal (A i o Client	ee may	be ase Dicor	be assessed if su Disnosal By Lab	lifsan Iah	ples a	re retai	tained long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Clienty X Discossed But I ab		
ss/QC Requirements & Con		CLP Like Deliverables,		oject S	peci	Project Specific Analyte Lists	e Lists				Ì	4		5			-
Matthew J. Logan	Company: SAIC	0	Date/Time: 09/04/2012	Date/Time: 09/04/2012/18:00		Received by Fed-Ex	X:I-b		Ì		Con	Company:			Date/Fime;		
0 ^	Company:		Date/Time:	Time:		Received by:	Q	ġ			3F	Company:	E		Date/Time:	0001	
Relinquished by:	Company:		Date/Time:	lime:	~	Received by:					- 10 - 10	Company:			Date/Time:		1
											_				_		

Page 307 of 308

14080 PestAmerica Pittsburgh

8x3

Client: Science Applications International Corp

Login Number: 14086 List Number: 1 Creator: Ras, Erin F

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Job Number: 180-14086-1

List Source: TestAmerica Pittsburgh

APPENDIX C

Groundwater Sample Logs

Project Nat Project Nut Purged by: Sampled by Checked by	mber: y:	MƏL	Harley-David	son 		Well Identi Project Loo Date: Date: Date:		<u> </u>	• \ 	<u>l</u>
	UME CALC		1"LD., K=(4" I.D., K=(6" I.D., K= 8" I.D., K= 10" ID, K=				
Purge Volu 1 Well Volu Purge Rate	ater column ime: me (gallons gpm) x (n to Water (ll Volumes (= 1 Well_Ve	olume		nn (<u>21.</u> ne (<u>35</u>	₿_ft) gal)		
Time	Temp °C	рH	Cond mS/cm	Turbidity NTU	D,O, mg/l	ORP mv	Purged Quantity	Well Volume	Depth to Water	
IISO	19.70	5.45	0.442	- 5	3.85	188				0.66
-1122	<u> 21.38</u>	<u>5.06</u>	0305	673	3.50	184			9.80	0.57
1300	- <u>71.56</u>	5.09	0.403	387	3.84	178			11.84	0.49
1205	19.00	2.00	0.384	452	3.00	162			12.00	0.44
188	19:30	317	0.425	408	1.12	121			12.20	0,40
1220	19.19	3.70	0.440	120	163	144			177	10.36
1225	H DL	5.20	0.448	J.PP	6.89	137			8.21	6.36
1230	01.91	5.24	0.453	73.5	0.93	134			13.91	
[]										
										· ·

		· · · ·								
									·····	· · ·
						- A				
	i	······								
PURGE INF	ORMATION					SAMPLING	INFORMAT	IQN:		
Time / Date 3	Started:	1150		1.2.17		Time / Date	Started:	1930	1	7.2.12
Time Purge I	-	1230				Sampled by:	_	W	&	
Purge Metho		X	_ Bailer			Sample Meti	hod: Bailer _		Other	Pung
Depth to Inta	-	<u>~ 74</u>	Terrore and the second s	(ft)		-	<u>×</u>	5	Composite	
Pump Type a	and ID:	1. Northa	· · · · · ·	<u>CKH</u>		# of Bottles (-	<u>_</u>)	
Purge Rate: Purged Volur				(gpm) (gpl)		Bottle Prese	_	H	_ مر	
Water Quality	_	ري. • #oriba U-22	POZZI	gal)		Recovering N Duplicate Sa				
How was yiel			Calibrated Cup	Stopwatch		Duplicate Sa Laboratory:	- Pining.			
Was well cav		•		No K		COC Form:	-			
Water contail			<u>181</u>	1		, , , , , , , , , , , , , , , ,	-			,
Grunfos cont				Hertz)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name: Project Number: Purged by: Sampled by: Checked by:	MDL	Harley-David			Well Identi Project Loo Date: Date: Date:		M	W. 123 York, Pa 1.12 1.13)
WELL VOLUME CAU Circle diameter and K	used below:	2" I.D., K=			6" I.D., K= 8" I.D., K= 10" ID, K=				
1 Well Volume: Total Depth (n (gallon: gpm) × (ft) x K valu s) x 3 = 3 We min	ue (<u>(),)(53</u> el i V otumes () = 1 Well_Vo	gal/ft) =	1 Well Volum	ma (18.0 ne (2.9	ft) gal)		
Temp °C	pH	Cond mS/cm	Turbidity NTU	D.O. mg/l	ORP	Purged Quantity	- Well Volume	Depth to Water	Purge Rate
	55.00 55.00 57.77 57.75	0.51 0.518 0.57 0.575 0.578 0.578 0.578 0.578 0.578 0.578 0.578 0.578	- 5 - 5 - 7 - 5 - 7 - 5 - 7 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	200. (.29 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20 (.20) (.				18.63 18.63 18.73 19.34 13.12* 13.13 13.15 13.17	0.44 0.44 0.57 0.57 0.57 0.57
PURGE INFORMATIO Time / Date Started: Time Purge End: Purge Method: Pump	N: КОЦС 	l Bailer	7.2.12		SAMPLING Time / Date Sampled by: Sample Meti	Started:	ION: ING MOL	 & Other	7.2.12 Rimp
Purge Method: Purp Depth to Intake: Purge Rate: Purged Volume: Water Quality Meter: How was yield measure Was well cavitated? Water containerized/Ar Grunfos controller set	Horiba U-22#	Y Calibrated Cu Yes K.	(gpm) (gal)			x Collected: rvatives: WL:	<u>4000</u>	Composite	

reversed broke leaged averally

Project Na	me:		Harley-David	lson		Well Identi	fication:	MU	1.194	
Project Nu	mber:				_	Project Loc	cation:		York, Pa	1
Purged by	:	War	&			Date:		\$	12	
Sampled b	iy:	MOL	&		-	Date:		71	12	
Checked b	iy:		&		_	Date;				
-	LUME CALC		<u>1" L D., K=</u>				1.469 gal/ft			
٠				0. <u>163 gal/</u> ⊅ 0.653 gal/ft		8" I.D., K= 10" ID, K≕				
Purge Vol 1 Well Volu Purge Rate	h (34.11 vater column ume: ume (gallon: gpm) x (h to Water (_ ft) x K valı 5) x 3 = 3 We min min	ell Volumes () = 1 Well Ve	(of water colur 1 Well Volum _gallons)	na (18.6 1e (3.0	ft) gal}		
Time	Temp °C	рH	Cond mS/cm	Turbidity NTU	D.O. mg/l	ORP mv	Purged Quantity	Well Volume	Depth to Water	
1328	1729	5.36	1.72	887	6 03	154		· Volume ·		0.25
1303	12.67	2.3	1.68	221	3.80				16 83	1 X & 1
1308	1711	3.17	100	204	3.81	132			19.00	0.18
1212	1636	5.14	1.22	245	1113	PGI		· · · ·	12 Ch	8.25
1318	1/ 32	5.69	1.46	231	4.87	1/ป็น			19.12	0.27
1222	12:02	5.07	128	123	5.00	124			36 12	0.18
1733	17 60	5.07	1:38	(80	195	113			200.82	D D
1222	Up it		1.20	iug	- <u>2.22</u>	108			11.70	+9.11
1333	16.00	5.06	1.00	147	0.32	190			FUN	
<u> </u>			·		· · ·					
				ļ	ļ					
					ļ					
										ļ]
								-		
						· ·				
					2					
PURGE INF	ORMATION					SAMPLING	INFORMAT	ION:		· · · · · · · · · · · · · · · · · · ·
Time / Date		1258	-	7.2.12		Time / Date		1353	1	7.2.12
Time Purge	-	1222				Sampled by:		MAI	۱ &	
Purge Meth			Bailer			Sample Meti			Other	Pinno
Depth to Inta		<u>_</u> -^ - - \		(ft)		*	-		Composite	1~1.12
Pump Type	-	M.D.	1+raceron	16164		# of Bottles (Collected:	3	composite	
		1 1.0		(apm)						<u> </u>
Purge Rate:	-	<u> </u>	(NU)	(gpm) (gpm)		Bottle Prese	-	rur		
Purged Volu	-	(01921	(gal)		Recovering \				
Water Quali		Horiba U-22#	ranci 1			Duplicate Sa	mpling:			
How was yie			Calibrated Cu			Laboratory:	-			
Was well ca			Yes	No 🗡		COC Form:	-			
Water conta		•	<u> </u>							
Grunfos con	troller set	0	NA	(Hertz)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name: Project Number:	Hai	ley-David	ison
Purged by:	MUZ	&	
Sampled by:	MUL	&	
Checked by:		&	

Well Identification:
Project Location:
Date:
Date:
Date:

MW-125	
York, Pa	
21.5.12	
21.5.12	

WELL VOLUME CALCULATION:

Circle diameter and K used below:	<u>1" I.D., K=0.041 gal/ft</u>
٢	@" I.D., K=0.163 gal/b
	4" I.D., K=0.653 gal/ft

6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft

1 Well Volume

1 Well Volume	
Total Depth (dp. 00	$\frac{10.71}{10.71}$ ft) = Height of water column (10.71 ft) ft) = Height of water column (10.71 ft) ft) × K value (0.163 gal/ft) = 1 Well Volume (1.7 gal)
Height of water column	$(10.71 \text{ ft}) \times \text{K value} (0.163 \text{ gal/ft}) = 1 \text{ Well Volume} (1.7 \text{ gal})$
Purge Volume:	
1 Well Volume (gallons) x 3 = 3 Well Volumes (gallons)
Purge Rate (gpm) x (min) = 1 Well Volume
Purge Rate (gpm) x (min) = 3 Well Volume

Time °C pH mS/cm NTU mg/l mv Quantity Volume Water Rate 0330 1330 -3 0.05 -31 - 0.05 <th></th> <th>Temp</th> <th></th> <th>Cond</th> <th>Turbidity</th> <th>D.O.</th> <th>ORP</th> <th>Purged</th> <th>Weil</th> <th>Depth to</th> <th>Purge</th>		Temp		Cond	Turbidity	D.O.	ORP	Purged	Weil	Depth to	Purge
SSD 131 -S 0.00 - 131 0.00 - 132 0.00	Time	°C		mS/cm		mg/l	mv		Volume		
0000 13.00	0845 T	8.30		1.33	- 5	0.05	167 - 1		1		0.23
State State State State State State State State State State State State State State State State State State State State State State State State State State	0850	04.8	6.56	131	- 5	00.00	- 157			12.61	0.23
State 1.34 - 3 0.03 - 315 0.38 0.45 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 State 1.35 - 5 0.00 - 324 0.15 0.15 0.15 PURGE INFORMATION: 1.1 - 1.2 - 1.2 0.15 0.15 0.15 0.15 0.15 PURGE INFORMATION: 1.1 - 1.2 - 1.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 </td <td>0822</td> <td></td> <td>6.67</td> <td>1.31</td> <td>- 2</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>12.89</td> <td>PIO</td>	0822		6.67	1.31	- 2	0.00				12.89	PIO
Nie 1.35 - 5 0.06 - 120 0.15 0.15 OTHS 1.35 - 5 0.06 - 120 0.15 0.15 OTHS 1.35 - 5 0.06 - 120 0.15 0.15 OTHS 1.35 - 5 0.06 - 120 1.35 0.15 OTHS 1.35 - 5 0.06 - 120 1.35 0.15 OTHS 1.35 - 5 0.06 - 120 1.35	0900	18.07	6.72	1.39	- 5	0.00	- 203			13.03	0.20
OPIIS 1.35 - S 0.00 - 324 Image: Second Secon	0905 1	7.74	6.76	134	. 2	0.00	1 - 216			13.38	0.26
PURGE INFORMATION: Time / Date Started: Sample Method: Pump X Bailer Sample Method: Pump Yurge Method: Pump X Bailer Cabra do Lucy Ggm) Purge Rate: Purge Volume: Water Quality Mete: Horha U-22# Yes No X Corport	0910	$\pi \alpha$	6.77	1.35	- 2	0.00	- 230			13.69	0.25
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:	0915	[7.66	6.80	1.35	~ S	0.00	- 224				
Time / Date Started: 0845 1 1.2.4.1 Time Purge End: 0915 1 1.2.4.1 Purge Method: Pump x Bailer Sampled by: Sampled by: Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purged Volume: (gal) Bottle Preservatives: HCL HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.12 Time Purge End: 0915 1 1.2.12 Purge Method: Pump x Bailer Sampled by: Sampled by: Depth to Intake: - 1.30 (ft) 8 Pump Type and ID: - 1.30 (ft) 8 Purge Rate: 0.13 (gpm) 8 0 Purged Volume: (gal) Bottle Preservatives: HCL HCL Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: Laboratory: Was well cavitated? Yes No X COC Form: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purge Volume: 0.1.22# (gal) Bottle Preservatives: HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form:											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1											
Time / Date Started: 0845 1 1.2.4.7 Time Purge End: 0915 1 1.2.4.7 Purge Method: Pump x Bailer Sampled by: 1 Depth to Intake: -71.30 (ft) 8 1 Purge Rate: -71.30 (ft) 4 6 Purge Rate: 0.13 (gpm) 8 6 Purged Volume: (gal) Bottle Preservatives: HCL 6 Water Quality Meter: Horiba U-22# SSM Duplicate Sampling: 1 How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: 1							 				
Time / Date Started: 0845 1 1.2.4.1 Time Purge End: 0915 1 1.2.4.1 Purge Method: Pump x Bailer Sampled by: Sampled by: Depth to Intake: - 1.3.0 (ft) 8 Pump Type and ID: - 1.3.0 (ft) 8 Purge Rate: 0.1.3 (gpm) 8 0 Purged Volume: (gal) Bottle Preservatives: HCL HCL Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: COC Form: COC Form:	PURGE INFOR	MATION	;				SAMPLING	INFORMAT	10N:		
Time Purge End: OPUS Sampled by: MI & Purge Method: Pump X Bailer Other Other Other Depth to Intake: A 30 (ft) Grab X Composite Other Pump Type and ID: A 30 (ft) Implementation Grab X Composite Implementation Purge Rate: O 33 (ggm) Bottle Preservatives: HCL Implementation Implementation Purged Volume: (gal) Recovering WL: Duplicate Sampling: Implementation Implementation How was yield measured? Calibrated Cup/Stopwatch Laboratory: Implementation Implementation Was well cavitated? Yes No X COC Form: Implementation	Time / Date Sta	rted:	0845	'	1.2.12				CIPO	. 1	てふね
x Bailer Sample Method: Bailer Other Depth to Intake:	Time Purge End	J:	2190						MI	ė.	
Depth to Intake: 71.30 (ft) Grab x Composite Pump Type and ID: 10 10 10 10 10 10 Purge Rate: 0.13 (gpm) Bottles Collected: 3 10 Purged Volume: (gal) Recovering WL: Duplicate Sampling: 10 Water Quality Meter: Horiba U-22# SSST Duplicate Sampling: 10 How was yield measured? Calibrated Cup/Stopwatch Laboratory: 100 10 Was well cavitated? Yes No X COC Form: 10	Purge Method:	Pump	x	Bailer							Avent
Pump Type and ID: Import Specific Id:			~ 21.2	<u>30</u>	(ft)			-			<u></u>
Purge Rate: 0.13 (gpm) Bottle Preservatives: HCL Purged Volume: (gal) Recovering WL: Duplicate Sampling: Water Quality Meter: Horiba U-22# Duplicate Sampling: Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: Color Form:			Jungto	1 that	6164				3		••••••••••••••••••••••••••••••••••••••
Purged Volume: (gal) Recovering WL: Water Quality Meter: Horiba U-22# Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: Was well cavitated? Yes No X	Purge Rate:	-	0	13	(gpm)				HCL		
Water Quality Meter: Horiba U-22# SSP Duplicate Sampling: How was yield measured? Calibrated Cup/Stopwatch Laboratory: Was well cavitated? Yes No X		:	<u> </u>	q				-			
How was yield measured? Calibrated Cup/Stopwatch Laboratory: Was well cavitated? Yes No X COC Form:		-	Horiba U-22#	15589	.~ /		-	-			
Was well cavitated? Yes No X COC Form:				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	p/Stopwatch						
Water containerized/Amount				Yes				-			
				6.9				-			
Grunfos controller set @ NA (Hertz)				VA	(Hertz)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name:	Harley-Davidson						
Project Number:							
Purged by:	MUL	&					
Sampled by:	MUL	&					
Checked by:	L	&					

Well Identification: Project Location: Date: Date: Date:

6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft

MW.118	
York, Pa	
8.2.14	
8.3.12	

WELL VOLUME CALCULATION:

Circle diameter and K used below:	1 <u>" I.D., K≡0.041 g</u> al/ft
v	2" I.D., K=0.163 gal/f
	4" I.D., K=0.653 gal/ft

1 Well Volume	f(t) = Depth to Water (7.47 ft) = Height of water column (16.03 ft)(16.03 ft) x K value (0.163 gal/ft) = 1 Well Volume (2.6 gal)
Total Depth (10.0	f(t) = Depth to Water ((1, 1)) = Height of water column (16, 05) f(t) = Height of water column
Height of water column	$(16.03 \text{ ft}) \times \text{K}$ value $(0.163 \text{ gal/ft}) = 1$ Well Volume (17.6 gal)
Purge Volume:	
1 Well Volume (gallons) x 3 = 3 Well Volumes (gallons)
Purge Rate (gpm) x (min) = 1 Well_Volume
Purge Rate (gpm) x (min) = 3 Well Volume

					1. 000	De la	1	L Daint e 1	ni and
Time ^{°C}		Cond	Turbidity	D.O.	ORP	Purged Quantity	Well Volume	Depth to Water	Purge Rate
Time °C	pH	mS/cm		mg/l	mv - 150	Quartury	Volume	VValet	A 12
18.4 18.4	8.97	ति न्यप		6.31	- 66			9.78	- X 28 -
Naze 18.2	506	1 1 1		W. Y.S.	103			9.60	12:28
1000 195	2.00	6.787	60.5	X iz	1.182			9.79	18 22
100 - 10 C	- <u> </u>	12-48	249	218	- 141			9.83	6 55
1010 12-	280	0 808	<u>- '</u> ''	613	-151			9.54	S. MA
		0.000	<u></u>	0.10	- 120			<u></u>	
								· .	
								·	and the second sec
	-				1			[
	-								
		·							
`									
									•
PURGE INFORMATIC	N: ACUS		0.010		SAMPLING		ION:		2010
Time / Date Started:	094		8 2 12		Time / Date		Toin	•	<u>8.9-12</u>
Time Purge End: `		010			Sampled by:		$\underline{\Gamma}$	&	- C
Purge Method: Pump	<u> </u>	Bailer			Sample Meth	hod: Bailer		Other	Tump
Depth to Intake:	<u>~ 99.</u>		(ft)			Χ		Composite	
Pump Type and ID:	11101 PX	HE MORING	16164		# of Bottles (-			
Purge Rate:	<u>0</u>		(gpm)		Bottle Preser	-		HCC	
Purged Volume:	6,=)((gal)		Recovering V				
Water Quality Meter:	Horiba U-22#	87320			Duplicate Sa	mpling:			
How was yield measur		Calibrated Cur			Laboratory:	_			
Was well cavitated?		Yes	No 📉	I	COC Form:	_			
Water containerized/A		6.3							
Grunfos controller set	@	NA (Hertz)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name: Project Number: Purged by: Sampled by: Checked by: WELL VOLUME CAL	& <u></u> & <u></u> &	idson	Well Identif Project Loc Date: Date: Date: Date:		MW: 120 York, Pa 8-1-12 8-1-12		90
	used below: 1" I.D., K	=0.041 gal/ft =0.163 gal/ft =0.653 gal/ft	6" I.D., K= 8" I.D., K=2 10" ID, K=2	2.61 gal/ft			
Height of water colum Purge Volume: 1 Well Volume (Purge Rate (ft) - Depth to Water ft) - Depth to Water ft) x K va gallons) x 3 = 3 V gpm) x (mi gpm) x (mi	liue (_ gal veli Volumes (n) = 1 Well_Volume	/ft) = 1 Well Volum	n () 3.9 e (1 .7	∫ft) gal)		
Time Temp °C 09189 6.0 0934 5.7 0934 5.7 0934 5.7 0934 5.7 0934 5.7 0934 5.7 0934 6.0 0934 6.0 0934 6.2 0934 6.2 0934 6.2 0934 6.2 0934 6.2 0934 6.3 00934 6.3 00934 6.3 00934 6.3 00934 6.3 00934 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 0094 6.3 <td>Cond mS/cm mS/cm S.34 0.25 S.34 0.24 S.05 0.24 S.05 0.24 S.02 0.25 U.98 0.25</td> <td>NTU m 484 (* 284 (* 284 (* 30, 128 (*) 30, 128 (*) 31, 128 (*)</td> <td>0. ORP g/l mv 16 100 57 80 24 204 27 207 17 207 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 10 173 11 153 28 154 10 155 11 155 12 155 13 155 14 155 15 15 16 15 17 15 17 15 18 15 19 15 10 15 10 15 11 15 12 15 13 15 14 15 15 15 16 15 17 15 18 15 19 15 10 15</td> <td>Purged Quantity</td> <td>Well Volume</td> <td>Depth to Water</td> <td>Purge Rate 0.25 0.12 0.14 0.14 0.14 0.17 0.14 0.17 0.17 0.17</td>	Cond mS/cm mS/cm S.34 0.25 S.34 0.24 S.05 0.24 S.05 0.24 S.02 0.25 U.98 0.25	NTU m 484 (* 284 (* 284 (* 30, 128 (*) 30, 128 (*) 31, 128 (*)	0. ORP g/l mv 16 100 57 80 24 204 27 207 17 207 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 17 201 10 173 11 153 28 154 10 155 11 155 12 155 13 155 14 155 15 15 16 15 17 15 17 15 18 15 19 15 10 15 10 15 11 15 12 15 13 15 14 15 15 15 16 15 17 15 18 15 19 15 10 15	Purged Quantity	Well Volume	Depth to Water	Purge Rate 0.25 0.12 0.14 0.14 0.14 0.17 0.14 0.17 0.17 0.17
PURGE INFORMATIO Time / Date Started: Time Purge End: Purge Method: Pump Depth to Intake: Pump Type and ID: Purge Rate: Purged Volume: Water Quality Meter: How was yield measure Was well cavitated? Water containerized/An	A Baile X Baile X Baile X Baile A B	(ft) (gpm) (gal) (gal) (gal) (gal) (gal) (gal)	SAMPLING I Time / Date S Sampled by: Sample Meth Grab <u>x</u> # of Bottles C Bottle Preser Recovering V Duplicate San Laboratory: COC Form:	Started:	1024	l & Other Composite	8.1.18 Pump

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

(Hertz)

NA

Grunfos controller set @

Project Name:	Harl	ison	
Project Number:			
Purged by:	MUL	&	
Sampled by:	mr	&	
Checked by:		&	. <u> </u>

Well Identification: Project Location: Date: Date: Date:

6" I.D., K=1.469 gal/ft

8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft

MW.121	
York, Pa	
8.1.12	
8.1-17	

WELL VOLUME CALCULATION:

Circle diameter and K used below:	
	2" I.D., K=0.163 gal/
	4" I.D., K=0.653 gal/ft

 1 Well Voluma:

 Total Depth (35,40 ft) - Depth to Water (11.45 ft) = Height of water column (11.95 ft)

 Height of water column (11.95 ft) x K value (0,163 gal/ft) = 1 Well Volume (12.95 ft)

 Purge Volume:

 1 Well Volume (______gallons) x 3 = 3 Well Volumes (______gallons)

 Purge Rate (______gpm) x (______min) = 1 Well Volume

 Purge Rate (______gpm) x (______min) = 3 Well Volume

· · · · · · · · · · · · · · · · · · ·						0.000		1 10/-11	Drinkle An	Dura
	Temp °C	-11	Cond mS/cm	Turbidity NTU	D.O.	ORP mv	Purged Quantity	Well Volume	Depth to Water	Purge Rate
Time	17 0	PH			mg/i	20.1	Quarinty	Volume	AAGIC!	Traile
1020	12.K	2.00	1 X X X X X X X	105	7.0%	. 122			1805	8 वि
10000	9.9	10.5		1897		82			10.10	8.19
1/00	162	<u>-595</u>	0.529	464	638	. 283		·	10-25	6.12
1/00	122	-5.65	0.541	181	<u> </u>	- Nic			76.00	H.K.
11110	<u>-19-9</u>	563	10.24	610	X 23	6/2			-84.15	× 13
1119	4.21-	561	0.221		<u> </u>	<u> </u>			1101	0.14
1100	dill.	- 3.37-	10.000	<u></u>	0.11	<u>- 4/2</u>			- Khinz	
1125	لاسطل	<u>-5.92</u>	Q.499	~ >	<u>11.0</u>	<u> </u>				Q.14
1120	16.5	<u><u>S.48</u></u>	0484	886	0.01	- 4/2			- <u>42</u> :25	0.11
1135	16.3	5.49	0.480	4/28	0.05	018			00.60	
· · · · · · · · · · · · · · · · · · ·									<u> </u>	
				1	*: 					
										-
					· .					·····
PURGE INFO	RMATION			A		SAMPLING	INFORMAT	ION:		A 1 10
Time / Date St	arted:	1020	1	8-1-12		Time / Date	Started:	$\ (S)\ $	Ι.	8.1.12
Time Purge Er	nd: `	<u> </u>	35			Sampled by:	:	M		
Purge Method		x	Bailer			Sample Meth	hod: Bailer		Other	Pump
Depth to Intak		~ 344		(ft)			x	· · ·	Composite	
Pump Type an		Norma	the arrow a	16164		# of Bottles (Collected:	3	•	
Purge Rate:		6		(gpm)		Bottle Prese	rvatives:	IVI		
Purged Volum	 e:	<u> </u>		(gal)		Recovering \	_			
Water Quality	-	loriba U-22#	87220	5-17		Duplicate Sa	-			
How was yield	****		Calibrated Cur	Stopwatch		Laboratory:				
Was well cavit		-		No		COC Form:	-			
Water containe			<u> </u>			CCC Form	-			
· · · · · · · · · · · · · · · · · · ·			NA ((Hoda)						
Grunfos contro	merser (<u>y</u>	<u>wa</u> (Hertz)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name: Project Number: Purged by: Sampled by: Checked by:	Harley-Davi	dson	Well Identification: Project Location: Date: Date: Date:	MI 8.1. 8.2.) · / 2] York, Pa
WELL VOLUME CALC Circle diameter and K	used below: 1" I.D., K=	<u>=0.041 gal/ft</u> =0.163 gal/ft =0.653 gal/ft	6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft	:	
Purge Volume: 1 Well Volume (Purge Rate (8_ft) - Depth to Water ((ft) × K val gallons) × 3 = 3 W gpm) × (min gpm) × (min	ell Volumes (n) = 1 Well Volume	ht of water column ()) = 1 Well Volume (3.5 gallons)	<mark>}}ft)</mark> gal)	
Time Temp °C 02391 AL.C. 02444 A3.3 0244 A3.3 0254 A2.6 0264 A1.7 0904 A1.7 0904 A1.7 0904 A1.5 0904 A1.7 0904 A1.7 0904 A1.5 0904 A1.5 0914 A1.9 0914 A1.5 0	Cond pH mS/cm S 3.5 0.250 S 3.6 0.249 S 3.6 0.249 S 3.6 0.249 S 3.7 0.236 S 3.7 0.282 S 3.7 0.283 S 3.7 0.383 S 3.7 0.383	Turbidity D.O. NTU mg/l - S 99 780 19 780	mv Quantity		Depth to Purge Water Rate 0.53 0.33 1.44 0.33 1.51 0.33 1.51 0.33 1.51 0.33 1.51 0.33 1.51 0.33 1.51 0.38 1.60 0.38 1.74 0.38 1.90 0.38 1.90 0.38 1.90 0.38 1.90 0.38 1.90 0.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.90 1.98 1.91 1.98 1.92 1.98 1.93 1.98 1.94 1.98 1.95 1.98 1
PURGE INFORMATION Time / Date Started: Time Purge End: Purge Method: Pump Depth to Intake: Pump Type and ID: Purge Rate: Purged Volume: Water Quality Meter: How was yield measured Was well cavitated? Water containerized/Ame	x Bailer AF.A Dr. Po. 2004 10.32 Horiba U-22# Horiba U-22# Yes	$ \begin{array}{c} \hline 8 \cdot 7 \cdot 18 \\ \hline (ff) \\ \hline (gpm) \\ (gal) \\ \hline No \\ \hline 8 \end{array} $	SAMPLING INFORMAT Time / Date Started: Sampled by: Sample Method: Bailer Grab <u>X</u> # of Bottles Collected: Bottle Preservatives: Recovering WL: Duplicate Sampling: Laboratory: COC Form:	1201 1201	8.3.13 Other Puona mposite

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

(Herlz)

Grunfos controller set _@

NA

Project Na Project Nu Purged by Sampled b Checked b	mber: <u>MUL &</u> y: <u>MUL &</u>			Well Identification: Project Location: Date: Date: Date:		MW · 123 York, Pa 8.2. 12 8.4.13				
	LUME CAte neter and K		1" I.D., K= 2" I.D., K= 4" I.D., K=	0.041 gal/ft 0.163 gal/ft 0.653 gal/ft		8" I.D., K=	=1.469 gal/ft =2.61 gal/ft =4.08 gal/ft			
Purge Volu 1 Well Volu Purge Rate	n (<u>30.4)</u> rater column ame: ime (gallons gpm) x (n to Water (ft) x K valu ft) x K valu s) x 3 = 3 We min min	ell Volumes () = 1 Well_Ve	(mn (<u>18.0</u> ne (<u>2</u> .	3_ft) gal)		
Time	Temp °C	. pH	Cond mS/cm	Turbidity NTU	D.O.	ORP mv	Purged Quantity	Well Volume	Depth to Water	Purge Rate
048	16.C	1202	0.439	- 5		214			VValci	033
0753	16.2	4.54	0.404	-5	1.46	262		·	12.76	0.40
0758	16.1	4.40	0.403	760	1.38	207	ļ	<u> </u>	12.84	0.36
0000	28	<u><u>u</u> <u>Su</u></u>	0.403	700	1.00	310			13.08	Bu K
0813	6.8	4.5	0.407	540	1.11	320			1316	
							ļ		ļ	
		•								
										· · · · ·
									·	
									. <u></u>	
					· .					
PURGE INF	ORMATION					SAMPLING	INFORMAT			0.0.10
Time / Date		6748	- 1 -	<u>83M</u>		Time / Date		<u>Q&IS</u>		8.3-19
Time Purge	•	00	$\overline{\sigma}$			Sampled by		I'VL	&	0
Purge Metho Depth to Inta		x 29	Bailer	(ft)		Sample Met Grab			Other Composite	1 abouts
Pump Type :	-	-	nennet	16164		# of Bottles	x Collected:	7		
Purge Rate:		0	a construction	(gpm)		Bottle Prese		Ĥ	<u>a</u>	
Purged Volu	-	DT		(gai)		Recovering				
Water Qualit	-	Horiba U-22#	ARSSA			Duplicate Sa	ampling:			
How was yie		•	Calibrated Cu			Laboratory:			·····	
Was well cav Water contai			Yes	<u>№ × </u> 3		COC Form:			•	

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

(Hertz)

Grunfos controller set @

NA

Project Name: Project Number: Purged by: Sampled by: Checked by: WELL VOLUME CALC Circle diameter and K t	used below: 1"1.D., K=		Well Identification: Project Location: Date: Date: Date: 6" I.D., K=1.469 gal/i 8" I.D., K=2.61 gal/it 10" ID, K=4.08 gal/it		<u>дч</u>
1 Well Volume: Total Depth (34.11) Height of water column Purge Volume: 1 Well Volume (Purge Rate (gallons) x 3 = 3 W gpm) x (mir gpm) x (mir	ell Volumes (ght of water column(<u>8</u> . t) = 1 Well Volume(<u>5.0</u> gallons)		
Time Temp °C IOH9 8.0 IOSE 1.3 IOSE 1.4 IOSE 1.3 IOSE 1.4 IOSE 1.4	Cond mS/cm 3.35 3.35 3.35 3.15 3.35 3.14 5.37 4.15 5.37 4.16 5.37 4.16 5.37 5.16 5.17 5.16 5.17 5.16 5.17 5.16 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	208 0.4 126 0.1 61.4 0.1	Imv Quantity 3 131 1 130 6 133 8 146 3 146 3 146 3 146 3 146 3 146 3 146 3 140 3 140	Volume Water	
PURGE INFORMATION: Time / Date Started: Time Purge End: Purge Method: Pump Depth to Intake: Pump Type and ID: Purge Rate: Purged Volume: Water Quality Meter: How was yield measured Was well cavitated? Water containerized/Amore	x Bailer x Bailer X Bailer 1 1 1 1 1 1 1 1 1 1 1 1 1	8. 2.12 (ft) (gpm) (gal) (gal) No <u>X</u>	SAMPLING INFORMA Time / Date Started: Sampled by: Sample Method: Bailer Grab <u>x</u> # of Bottles Collected: Bottle Preservatives: Recovering WL: Duplicate Sampling: Laboratory: COC Form:	<u>1127</u> 1 <u>RDL</u> &	<u>8. j. 12</u> Purp

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

(Hertz)

Grunfos controller set @

NA

Project Name:	Harle	ey-David	son
Project Number:			
Purged by:	TOM	&	
Sampled by:	MOS	&	
Checked by:		&	

Well Identification: Project Location: Date: Date: Date:

W-125 York, Pa

WELL VOLUME CALCULATION:

Circle diameter and K used below:	
v	2" I.D., K=0.163 gal/fD
	4" I.D., K=0.653 gal/ft

6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft

1 Well Volume:

Total Depth (22.30 ft) - Depth to Water (10.79 ft) = Height of water column (11.51 ft) Height of water column (11.51 ft) x K value (0.63 gal/ft) = 1 Well Volume (1.9 gal)
Height of water column (1.31 ft) x K value (9.163 gal/ft) = 1 Well Volume (1.9 gal)
Purge Volume:
1 Well Volume (gallons) x 3 = 3 Well Volumes (gallons)
Purge Rate (gpm) x (min) = 1 Well Volume
Purge Rate (gpm) x (min) = 3 Well Volume

	Temp		Cond	Turbidity	D.O.	ORP	Purged	Well	Depth to	Purge
Time	ິຕ	;.∴pH .	mS/cm	NTU	mg/l	mv	Quantity	Volume	Water	Rate
0826	6.91	663	117	- 5	690	· 155				0.23
0831	19.2	6.66	1.17	- 5	0.34	- 223			11.43	0.20
0836	6.91	6.61	P.T	.5	0.54	1. 124			11.70	0.31
0841	18.9	6.57	1.23	$\cdot \delta$	0.53	- 90			12.09	0.28
0846	18.6	6.57	1.24	505	0.32	· 87			1235	0.25
0851	2.8/	6.51	1,24	404	0.38	· 84		1	12.53	0.23
0856	18.6	6.52	1.24	324	P1.0	· 81			1261	0.33
1090	183	6.50	1.23	108	DIN	- 97			12.74	0.25
20190	18.4	6.50	1.22	475	11.0	- 95			12.81	
					······································					
										-
		ĺ			·					
						1				
PURGE INF	ORMATION	:				SAMPLING	INFORMAT	ION:		
Time / Date \$		0876	1	8.1.12		Time / Date :	Started:	0906	1	8.1.12
Time Purge I	End: '	PØ)	30			Sampled by:		MDL	Å	
Purge Metho	-	x	Bailer			Sample Meth			Other	Fump
Depth to Inta		~ alz		(ft)		•	κ		Composite	
Pump Type a		Marine	tt-nore	KIAA		# of Bottles (3	•	••••
Purge Rate:		<u></u> 7 7 7		(gpm)		Bottle Prese	-	HCI	,	
Purged Volur	me: ~	<u> </u>		(gal)		Recovering V	-			
Water Quality		Horiba U-22#	82552			Duplicate Sa				
How was yiel			Calibrated Cur	o/Stopwatch		Laboratory:				
Was well cav				NoX		COC Form:	• -			.
Water contair			0/	··					·	
Grunfos conta		-		Hertz)						•
Granios com		<u>بع</u>	<u> </u>	(10112)						

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

· .

Project Name: Project Number: Purged by: Sampled by: Checked by:	Harley-Davidson & & & & & &	Well Identification: Project Location: Date: Date: Date:	MW77 York, Pa 8.1.12 8.1.12
WELL VOLUME CALCULATIO Circle diameter and K used befo			
1 Well Volume: Total Depth (Height of water column (Purge Volume: 1 Well Volume (gall Purge Rate (gpm) x Purge Rate (gpm) x	ons) x 3 = 3 Well Volumes (min) = 1 Well V	olume	ft) gal)
Time Temp °C pH 12001 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1201 1.0 5.3 1202 1.6 5.1 1203 1.6 5.1 1203 1.6 5.1 1203 1.6 5.1 1203 1.6 5.1 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 5.4 1203 1.5 </td <td>Cond mS/cm Turbidity NTU (D. SS) - (D. SS) -</td> <td>D.O. ORP mg/l Purged Quantity 1.1.1 - 84 0.21 - 84 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 153 0.03 153 0.04 153 0.05 153 0.06 153 0.07 153 0.08 153 0.09 153 0.09 153 0.09 153 0.09 153 0.09 153 0.01 153 0.01 153 0.01 153 1.01 153 1.01 153 1.01 153 1.01 153 1.01 153</td> <td>Well Depth to Purge Volume Water Rate 0.25 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35</td>	Cond mS/cm Turbidity NTU (D. SS) - (D. SS) -	D.O. ORP mg/l Purged Quantity 1.1.1 - 84 0.21 - 84 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 140 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 143 0.30 153 0.03 153 0.04 153 0.05 153 0.06 153 0.07 153 0.08 153 0.09 153 0.09 153 0.09 153 0.09 153 0.09 153 0.01 153 0.01 153 0.01 153 1.01 153 1.01 153 1.01 153 1.01 153 1.01 153	Well Depth to Purge Volume Water Rate 0.25 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.173 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.175 0.25 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35 0.150 0.35
PURGE INFORMATION: Time / Date Started: 1202	8.1.12	SAMPLING INFORMATI Time / Date Started:	N: 1247 8-1-12
Time 7 Date Stated. Time Purge End: Purge Method: Pump Depth to Intake: Pump Type and ID: Purge Rate: Purged Volume: Water Quality Meter: Horiba U-22 How was yield measured? Was well cavitated? Water containerized/Amount Grunfos controller set @	47 Bailer (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	Sampled by: I Sample Method: Bailer	Composite Composite Composite

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Project Name:	Harle	ey-Davidson	Well Identification:	MW-160
Project Number:	260310	0044-3000-100	Project Location:	York, Pa
Purged by:	MJL	&	Date:	d . 13 . 13
Sampled by:	MJL	&	Date:	9.13.13
Checked by:		&	Date:	······

WELL VOLUME CALCULATION:

Circle diameter and K used below: 1" I.D., K=0.041 gal/ft
2" I:D., K=0.163 gal/ji
4" I.D., K=0.653 gal/ft

6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" ID, K=4.08 gal/ft

.A.

1 Well Volume:

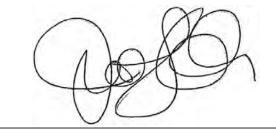
Total Depth (36.95 ft) - Depth to Water (19.06 ft) = Height of water column (17.89 ft) Height of water column (17.89 ft) x K value (0.163 gal/ft) = 1 Well Volume (2.9 gal)
Purge Volume:
1 Well Volume (gallons) x 3 = 3 Well Volumes (gallons)
Purge Rate (gpm) x (min) ≃ 1 Well Volume
Purge Rate (gpm) x (min) = 3 Well Volume

	Temp		Cond	Turbidity	D.O.	ORP	- Purged	Well	Depth to	Purge	
Time	°C.	pH 👘	mS/cm	NTU	mg/l	_ mv	Quantity	Volume	Water	Rate	
	5.84	6.58	6463	NM	12.08	-111	l			0.36	1
11/18	15.68	651	0,434		0.885	PXI			80.17	0.31	
1123	15.58	643	0.378		0.54	3.6			20.67	0.38	
1198	15.55	6.40	0.355		0.44	\$ 88			11.03	0. 28	1
1153	15.55	6.41	0356		1 AUA	-961			2124	6 38	1
1132	15.55	643	0356		0 37	- 99.5			2138		-
	12.2.			-					Y 10 OO	1	1
										1	8. ju
}											1
				·						<u> </u>	-
											-
										<u> </u>	1
						<u> </u>				 !	1
l									ļ		1
-											
ļ											
											ĺ
PURGE INFO	RMATION	l;				SAMPLING	INFORMAT	IQN:			•
Time / Date S	Started:	1113	1	9.12.12		Time / Date	Started:	1138		9.12.12	
Time Purge E	nd:	1138	-			Sampled by:	-	INT	&		
Purge Metho		x	Bailer			Sample Met	•		Other	Pump	
Depth to Intal		~ 3	5.9 -	(ft)			х -		Composite	!	
Pump Type a		Mini-Monsoon a	AL & A.	6		# of Bottles			3	·	
Purge Rate:		Ø	K CY	<u>ч</u> (gpm)		Bottle Prese			HCL		
Purged Volun	ne: -			(gal)		Recovering '	-		HQL		
Water Quality		Horiba U-22#	(566)	\≝~'/ 7		Duplicate Sa					
How was yield	d measurer	12 15 - 55	Calibrated ou	n/etopurateb		Laboratory:	pung.				
Was well cavi			Yes	No X		COC Form:	-				
Water contain			7	<u> </u>		COC FUMI:	-				
			((1.1							
Grunfos contr	oller set	AU 9		(Hertz)							

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

APPENDIX D

Groundwater Analytical Reports



ANALYTICAL REPORT

Job Number: 180-12129-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release Jill L Colussy Project Manager I 7/25/2012 5:11 PM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 07/25/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	9
Executive Summary	10
Method Summary	11
Method / Analyst Summary	12
Sample Datasheets	13
Surrogate Summary	19
QC Data Summary	20
Data Qualifiers	26
QC Association Summary	27
Lab Chronicle	28
Reagent Traceability	30
Certification Summary	36
Organic Sample Data	37
GC/MS VOA	37
Method 8260B	37
Method 8260B QC Summary	38
Method 8260B Sample Data	50
Standards Data	98
Method 8260B ICAL Data	98
Method 8260B CCAL Data	144
Raw QC Data	158
Method 8260B Tune Data	158

Table of Contents

Method 8260B Blank Data	170
Method 8260B LCS/LCSD Data	180
Method 8260B Run Logs	200
Shipping and Receiving Documents	203
Client Chain of Custody	204
Sample Receipt Checklist	207

CASE NARRATIVE

Client: Science Applications International Corp

Project: Harley Davidson

Report Number: 180-12129-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 07/03/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.3 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Due to the concentration of target compounds detected, sample HD-MW-124-01-0 (180-12129-4)[50X] was analyzed at a dilution. The reporting limits have been adjusted accordingly.

SAMPLE SUMMARY

Client: Science Applications International Corp

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
180-12129-1	HD-MW-125-01-0	Water	07/02/2012 0915	07/03/2012 1015
180-12129-2	HD-MW-123-01-0	Water	07/02/2012 1116	07/03/2012 1015
180-12129-3	HD-MW-122-01-0	Water	07/02/2012 1230	07/03/2012 1015
180-12129-4	HD-MW-124-01-0	Water	07/02/2012 1333	07/03/2012 1015
180-12129-5	TRIP BLANK 1	Water	07/02/2012 1400	07/03/2012 1015

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Client Sample ID			Reporting		
Analyte	Result	Qualifier	Limit	Units	Method
180-12129-4 HD-MW-124-01-0					
Benzene	1400		250	ug/L	8260B
Toluene	4000		250	ug/L	8260B
Ethylbenzene	660		250	ug/L	8260B
Xylenes, Total	3800		15	ug/L	8260B
Cumene	57		5.0	ug/L	8260B
Methyl tert-butyl ether	39		5.0	ug/L	8260B
1,2,4-Trimethylbenzene	550		250	ug/L	8260B
1,3,5-Trimethylbenzene	240		5.0	ug/L	8260B
Naphthalene	1600		250	ug/L	8260B

METHOD SUMMARY

Client: Science Applications International Corp

Job Number: 180-12129-1

Lab Location	Method	Preparation Method
TAL PIT	SW846 8260B	
TAL PIT		SW846 5030B
	TAL PIT	TAL PIT SW846 8260B

Lab References:

TAL PIT = TestAmerica Pittsburgh

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Science Applications International Corp

Method

SW846 8260B

Analyst

Journet, Patrick

Job Number: 180-12129-1

Analyst ID PJ

Client: Science Applications International Corp

Client Sample ID:	HD-MW-125-01-0						
Lab Sample ID: Client Matrix:	180-12129-1 Water						ampled: 07/02/2012 091 eceived: 07/03/2012 101
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-40957		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4070619.D
Dilution:	1.0				Initial Weight/Volu	me:	5 mL
Analysis Date:	07/06/2012 1658				Final Weight/Volur	me:	5 mL
Prep Date:	07/06/2012 1658						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth	ner	5.0		U	1.0		5.0
1,2,4-Trimethylben:	zene	5.0		U	0.52		5.0
1,3,5-Trimethylben:	zene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	er Aco	ceptance	e Limits
1,2-Dichloroethane	-d4 (Surr)	97			62	- 123	
Toluene-d8 (Surr)		101			80	- 120	
4-Bromofluorobenz	ene (Surr)	96			75	- 120	
Dibromofluorometh	ane (Surr)	105			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-123-01-0						
Lab Sample ID: Client Matrix:	180-12129-2 Water						ampled: 07/02/2012 1116 eceived: 07/03/2012 1015
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-40957		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4070620.D
Dilution:	1.0				Initial Weight/Volu	me:	5 mL
Analysis Date:	07/06/2012 1723				Final Weight/Volur	me:	5 mL
Prep Date:	07/06/2012 1723						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth	ner	5.0		U	1.0		5.0
1,2,4-Trimethylben:		5.0		U	0.52		5.0
1,3,5-Trimethylben:	zene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	er Aco	ceptance	e Limits
1,2-Dichloroethane	-d4 (Surr)	96			62	- 123	
Toluene-d8 (Surr)		108			80	- 120	
4-Bromofluorobenz	ene (Surr)	101			75	- 120	
Dibromofluorometh	ane (Surr)	101			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-122-01-0						
Lab Sample ID: Client Matrix:	180-12129-3 Water						npled: 07/02/2012 1230 ceived: 07/03/2012 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-40957		Instrument ID:		
Prep Method: Dilution:	5030B 1.0	Prep Batch:	N/A		Lab File ID: Initial Weight/Volu		4070621.D 5 mL
Analysis Date:	07/06/2012 1748				Final Weight/Volu		
Prep Date:	07/06/2012 1748						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth	er	5.0		U	1.0		5.0
1,2,4-Trimethylbenz	ene	5.0		U	0.52		5.0
1,3,5-Trimethylbenz	ene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	r Ac	ceptance	Limits
1,2-Dichloroethane-	d4 (Surr)	98			62	- 123	
Toluene-d8 (Surr)		97			80	- 120	
4-Bromofluorobenze	ene (Surr)	92			75	- 120	
Dibromofluorometha	ane (Surr)	104			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-124-01-0						
Lab Sample ID: Client Matrix:	180-12129-4 Water						Sampled: 07/02/2012 1333 Received: 07/03/2012 1015
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-40957		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4070622.D
Dilution:	1.0				Initial Weight/Volu	me:	5 mL
Analysis Date:	07/06/2012 1812				Final Weight/Volu	me:	5 mL
Prep Date:	07/06/2012 1812						
Analyte		Result (u	ıg/L)	Qualifie	r MDL		RL
Benzene		1100		E	0.99		5.0
Toluene		2200		E	0.85		5.0
Ethylbenzene		670		E	0.62		5.0
Xylenes, Total		3800			2.0		15
Cumene		57			0.53		5.0
Methyl tert-butyl eth	ner	39			1.0		5.0
1,2,4-Trimethylbenz	zene	670		E	0.52		5.0
1,3,5-Trimethylbenz	zene	240			0.59		5.0
Naphthalene		280		E	0.47		5.0
Surrogate		%Rec		Qualifie	r Ac	ceptand	ce Limits
1,2-Dichloroethane	-d4 (Surr)	106			62	- 123	
Toluene-d8 (Surr)		98			80	- 120	
4-Bromofluorobenz	ene (Surr)	100			75	- 120	
Dibromofluorometh	ane (Surr)	95			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-124-01-0						
Lab Sample ID: Client Matrix:	180-12129-4 Water						pled: 07/02/2012 1333 eived: 07/03/2012 1015
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution:	8260B 5030B 50	Analysis Batch: Prep Batch:	180-41257 N/A		Instrument ID: Lab File ID: Initial Weight/Volu		⊃4)71011.D mL
Analysis Date: Prep Date:	07/10/2012 1409 07/10/2012 1409	Run Type:	DL		Final Weight/Volu	me: 5	mL
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		1400			49		250
Toluene		4000			42		250
Ethylbenzene		660			31		250
Xylenes, Total		4300			98		750
Cumene		53		J	27		250
Methyl tert-butyl eth	er	250		U	51		250
1,2,4-Trimethylbenz	ene	550			26		250
1,3,5-Trimethylbenz	ene	210		J	30		250
Naphthalene		1600			24		250
Surrogate		%Rec		Qualifie	r Ac	ceptance Li	imits
1,2-Dichloroethane-	d4 (Surr)	87			62	- 123	
Toluene-d8 (Surr)		85			80	- 120	
4-Bromofluorobenze	. ,	99			75	- 120	
Dibromofluorometha	ane (Surr)	94			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	TRIP BLANK 1						
Lab Sample ID: Client Matrix:	180-12129-5 Water						npled: 07/02/2012 1400 ceived: 07/03/2012 1015
		8260B Volatile Orga	nic Compound	ds (GC/MS	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 07/06/2012 1214 07/06/2012 1214	Analysis Batch: Prep Batch:	180-40957 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur	4 me: 5	IP4 070608.D 5 mL 6 mL
Analyte		Result (u	a/L)	Qualifie	r MDL		RL
Benzene		5.0	0 /	U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth		5.0		U	1.0		5.0
1,2,4-Trimethylbenz		5.0		U	0.52		5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	r Aco	ceptance l	Limits
1,2-Dichloroethane	-d4 (Surr)	81			62	- 123	
Toluene-d8 (Surr)		86				- 120	
4-Bromofluorobenz	, ,	80				- 120	
Dibromofluorometh	ane (Surr)	86			80	- 120	

Quality Control Results

Job Number: 180-12129-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-12129-1	HD-MW-125-01-0	105	97	101	96
180-12129-2	HD-MW-123-01-0	101	96	108	101
180-12129-3	HD-MW-122-01-0	104	98	97	92
180-12129-4	HD-MW-124-01-0	95	106	98	100
180-12129-4 DL	HD-MW-124-01-0 DL	94	87	85	99
180-12129-5	TRIP BLANK 1	86	81	86	80
MB 180-40957/5		91	94	90	92
MB 180-41257/6		94	101	92	97
LCS 180-40957/9		96	87	86	89
LCS 180-41257/1		96	86	88	92
LCSD 180-40957/10		99	92	89	92
LCSD 180-41257/2		96	87	89	93

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-123
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	75-120

Job Number: 180-12129-1

5.0

Client: Science Applications International Corp

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 180-40957/5 Water 1.0 07/06/2012 1151 07/06/2012 1151 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	180-40957 N/A N/A ug/L			HP4 4070607.D 5 mL 5 mL
Analyte		Res	ult	Qual	MDL	RL
Benzene		5.0		U	0.99	5.0
Toluene		5.0		U	0.85	5.0
Ethylbenzene		5.0		U	0.62	5.0
Xylenes, Total		15		U	2.0	15
Cumene		5.0		U	0.53	5.0
Methyl tert-butyl eth	ner	5.0		U	1.0	5.0
1,2,4-Trimethylbenz	zene	5.0		U	0.52	5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59	5.0

5.0

% Rec

94

90

92

91

U

Method Blank - Batch: 180-40957

Naphthalene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Surrogate

Method: 8260B Preparation: 5030B

0.47

Acceptance Limits

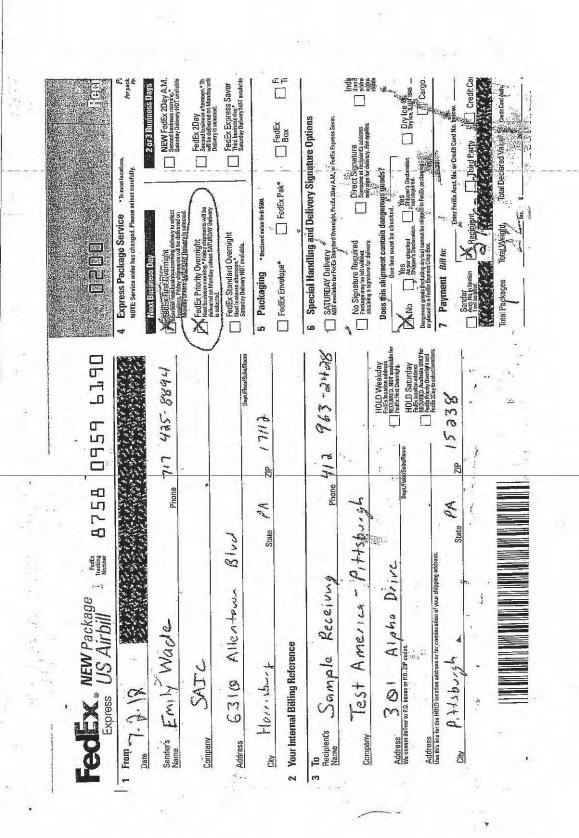
62 - 123

80 - 120

75 - 120

80 - 120

Shipping and Receiving Documents


Login Container Summary Report

180-12129

Client Sample ID	Lab ID	Container Type	<u>Container</u> <u>pH</u>	Preservative Added (mls)	<u>Lot #</u>
HD-MW-125-01-0	180-12129-A-1	Voa Vial 40ml - Hydrochloric Acid	Ł		
HD-MW-125-01-0	180-12129-B-1	Voa Vial 40ml - Hydrochloric Acid			$\frac{1}{2} = \frac{1}{2} + \frac{1}$
HD-MW-125-01-0	180-12129-C-1	Voa Vial 40ml - Hydrochloric Acid			· · · · · · · · · · · · · · · · · · ·
HD-MW-123-01-0	180-12129-A-2	Voa Vial 40ml - Hydrochloric Acid		· · · · · · · · · · · · · · · · · · ·	
HD-MW-123-01-0	180-12129-B-2	Voa Vial 40ml - Hydrochloric Acid		·	
HD-MW-123-01-0	180-12129-C-2	Voa Vial 40ml - Hydrochloric Acid			. <u></u>
HD-MW-122-01-0	180-12129-A-3	Voa Vial 40ml - Hydrochloric Acid			
HD-MW-122-01-0	180-12129-B-3	Voa Vial 40ml - Hydrochloric Acid	<u> </u>	۰۰۰۰ ۲۰ <u>۰۰ - ۲۰</u> ۰	· · · · · · · · · · · · · · · · · · ·
HD-MW-122-01-0	180-12129-C-3	Voa Vial 40ml - Hydrochloric Acid		аланы 	
HD-MW-124-01-0	180-12129-A-4	Voa Vial 40ml - Hydrochloric Acid		· .	. <u></u>
HD-MW-124-01-0	180-12129-B-4	Voa Vial 40ml - Hydrochloric Acid		· · · · ·	<i></i>
HD-MW-124-01-0	180-12129-C-4	Voa Vial 40ml - Hydrochloric Acid			
TRIP BLANK 1	180-12129-A-5	Voa Vial 40ml - Hydrochloric Acid		· · · · · · · · · · · · · · · · · · ·	
TRIP BLANK 1	180-12129-B-5	Voa Vial 40ml - Hydrochloric Acid		· · ·	

Page 1 of 1

Page 204 of 207

Page 205 of 207

Toof A monitor Ditteland		िस् म	6	4	H H 3.3	3						n - Anna ang a fan an a	
a concentra i fuesbur gu 301 Alpha Drive				ξξ	, , ,		ĥ	,			Ę	TestAmerica	Q
Pittsburgh, PA 15238 phone 412.963.7058 fax 412.963.2470				5	am o	Chain of Custody Record	y Kecor				THE	THE LEADER IN ENVIRONMENTAL TESTING	STING
	Project Manager: Rodney Myers	Rodney Mye	LS		Site Cor	Site Contact: Emily Wade	- P	$\left \right $	Date Submitted.	mittod.	7/0/010	1 COC No. 17 APD770220191	tes, Inc.
Science Applications International Corp. (SAIC)	Tel/Fax: 717-468-1439 / 717-901-8102	-1439 / 717-9(1-8102		Lab Co	Lab Contact: Carrie Gamber	umber		Carrier:		2102511	1 of 1 COCs	U U
US IV Alleritown Bivg. Harrishi iro På 17119	Anal	Analysis Turnaround Time	nd Time							 		! 	
	Calendar (C)	Calendar (C) or Work Days (W)		1									
(717) 901-8100 EAV	TATH	TAT if different from Below: Standard	w: Standard		pəpsə								
ID Blda 45 UST C] [2 weeks			<u>ola</u> U							Container No.	
Site: York PA] []	1 week) 1 2 1 1 2 1 2 1 2							SDG No.	
Quote # 18009897-0		L day			ous T								
Sample Identification	Sample Sample Date Time	yle e Sample Type	ype Matrix	# of ix Cont.	(8560B0 PADEP US							Commits M	
HD-MW-125-01-0	7/2/2012 9:15	5 Groundwater	ater Water	m m	×								01085
HD-MW-123-01-0	7/2/2012 11:16	6 Groundwater	ater Water	л ц	×						, ,		
HD-MW-122-01-0	7/2/2012 12:30	0 Groundwater	ater Water	ы 13	×								
HD-MW-124-01-0	7/2/2012 13:33	3 Groundwater		ы м	×								
Trip Blank 1	7/2/2012 14:00		-	2	×								
Temp Blank 1	7/2/2012 14:00	0 Temp Blank	unk Water	- -									
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;		5=NaOHi 6= Unpreserved 7=Na2S2O3	eserved 7=	Na2S203	2 6	4 V	5 5 6						
			H	Field Filter	z	×	z		+ >	* >	4 X		
Fossible Hazard Identification	Skin Irritant	Doison B	[Ē			nple Disposal (A	(A fee may b	e assesse	d if samp	les are rel	ained longer	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
ss/QC Requirements & Cor	CLP Lik	Deliverabl		oject S	pecific	Project Specific Analyte Lists	1	uisposai by Lao	/ LaD		hive For	Months	
											:		
Matthew 1. Logan	Company: SAIC		Datc/ 07/02	Date/Time: 07/02/2012/ 143	16	Received by Fed-Ex			Company.			Date/Time:	
Relinquished by:	Company:		Date/	Date/Time:	Rec	Received by:	A nt	when	Company:	No.	4	Date/Time: 2	19 IL
Relinquished by:	Company:		Date/	Date/Time:	Rec	Received by:			Company:		,	Date/Time:	Civit
			-		-				_				

Page 206 of 207

Client: Science Applications International Corp

Login Number: 12129 List Number: 1 Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 180-12129-1

List Source: TestAmerica Pittsburgh

ANALYTICAL REPORT

Job Number: 180-13083-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release. Jill L Colussy Project Manager I 8/24/2012 4:56 PM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 08/24/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	12
Executive Summary	13
Method Summary	15
Method / Analyst Summary	16
Sample Datasheets	17
Surrogate Summary	27
QC Data Summary	28
Data Qualifiers	40
QC Association Summary	41
Lab Chronicle	42
Reagent Traceability	45
Certification Summary	61
Organic Sample Data	62
GC/MS VOA	62
Method 8260B	62
Method 8260B QC Summary	63
Method 8260B Sample Data	89
Standards Data	188
Method 8260B ICAL Data	188
Method 8260B CCAL Data	350
Raw QC Data	388
Method 8260B Tune Data	388

Table of Contents

Method 8260B Blank Data	416
Method 8260B LCS/LCSD Data	439
Method 8260B MS/MSD Data	469
Method 8260B Run Logs	489
Shipping and Receiving Documents	496
Client Chain of Custody	497
Sample Receipt Checklist	499

CASE NARRATIVE

Client: Science Applications International Corp

Project: Harley Davidson

Report Number: 180-13083-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/03/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.4 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Due to the concentration of target compounds detected, samples HD-MW-121-01-0 (180-13083-3)[100X], HD-MW-77-01-0 (180-13083-4) [10X], HD-MW-118-01-0 (180-13083-7)[10X] and HD-MW-124-01-0 (180-13083-8)[40X] were analyzed at a dilution. The reporting limits have been adjusted accordingly.

Naphthalene was detected in the method blank for batch 180-45069 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

The relative percent difference between the laboratory control standard and the laboratory control duplicate for batch 180-45069 was outside of the control limits for methyl tert-butyl ether and naphthalene.

Client: Science Applications International Corp

Job Number: 180-13083-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
180-13083-1	HD-MW-125-01-0	Water	08/01/2012 0906	08/03/2012 0930
180-13083-2	HD-MW-120-01-0	Water	08/01/2012 1024	08/03/2012 0930
180-13083-3	HD-MW-121-01-0	Water	08/01/2012 1135	08/03/2012 0930
180-13083-4	HD-MW-77-01-0	Water	08/01/2012 1247	08/03/2012 0930
180-13083-5	HD-MW-123-01-0	Water	08/02/2012 0813	08/03/2012 0930
180-13083-6	HD-MW-122-01-0	Water	08/02/2012 0919	08/03/2012 0930
180-13083-7	HD-MW-118-01-0	Water	08/02/2012 1010	08/03/2012 0930
180-13083-8	HD-MW-124-01-0	Water	08/02/2012 1127	08/03/2012 0930
180-13083-9	TRIP BLANK 1	Water	08/02/2012 1200	08/03/2012 0930

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Cli Analyte	ient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
180-13083-2	HD-MW-120-01-0					
Benzene		7.0		5.0	ug/L	8260B
Methyl tert-butyl ether		6.8		5.0	ug/L	8260B
180-13083-3	HD-MW-121-01-0					
Benzene		480	J	500	ug/L	8260B
Toluene		6900		500	ug/L	8260B
Ethylbenzene		1900		500	ug/L	8260B
Xylenes, Total		7600		1500	ug/L	8260B
Cumene		89		5.0	ug/L	8260B
Methyl tert-butyl ether		35		5.0	ug/L	8260B
1,2,4-Trimethylbenzene		980		500	ug/L	8260B
1,3,5-Trimethylbenzene		230		5.0	ug/L	8260B
180-13083-4	HD-MW-77-01-0					
Benzene		2000		50	ug/L	8260B
Toluene		110		50	ug/L	8260B
Ethylbenzene		140		50	ug/L	8260B
Xylenes, Total		130	J	150	ug/L	8260B
Cumene		24	J	50	ug/L	8260B
Methyl tert-butyl ether		540		50	ug/L	8260B
1,2,4-Trimethylbenzene		33	J	50	ug/L	8260B
1,3,5-Trimethylbenzene		13	J	50	ug/L	8260B
Naphthalene		41	J	50	ug/L	8260B
180-13083-5	HD-MW-123-01-0					
Naphthalene		2.8	JB*	5.0	ug/L	8260B
180-13083-6	HD-MW-122-01-0					
Naphthalene		1.1	JB*	5.0	ug/L	8260B
180-13083-7	HD-MW-118-01-0					
Benzene		39	J	50	ug/L	8260B
Toluene		110		50	ug/L	8260B
Ethylbenzene		600		50	ug/L	8260B
Xylenes, Total		1400		150	ug/L	8260B
Cumene		78		50	ug/L	8260B
1,2,4-Trimethylbenzene		600		50	ug/L	8260B
1,3,5-Trimethylbenzene		210		50	ug/L	8260B
Naphthalene		22	JB*	50	ug/L	8260B

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Client Sample ID			Reporting		
Analyte	Result	Qualifier	Limit	Units	Method
180-13083-8 HD-MW-124-01-0					
Benzene	2300		200	ug/L	8260B
Toluene	8400		200	ug/L	8260B
Ethylbenzene	960		200	ug/L	8260B
Xylenes, Total	9500		600	ug/L	8260B
Cumene	36	J	200	ug/L	8260B
Methyl tert-butyl ether	44	J *	200	ug/L	8260B
1,2,4-Trimethylbenzene	1200		200	ug/L	8260B
1,3,5-Trimethylbenzene	490		200	ug/L	8260B
Naphthalene	540	B *	200	ug/L	8260B

METHOD SUMMARY

Client: Science Applications International Corp

Job Number: 180-13083-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5030B

Lab References:

TAL PIT = TestAmerica Pittsburgh

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Science Applications International Corp

Method

SW846 8260B

Analyst

Job Number: 180-13083-1

Journet, Patrick

Analyst ID

Client: Science Applications International Corp

Client Sample ID:	HD-MW-125-01-0						
Lab Sample ID: Client Matrix:	180-13083-1 Water						ampled: 08/01/2012 0906 eceived: 08/03/2012 0930
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-43981		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4080622.D
Dilution:	1.0				Initial Weight/Volu	me:	5 mL
Analysis Date:	08/06/2012 1705				Final Weight/Volur	me:	5 mL
Prep Date:	08/06/2012 1705						
Analyte		Result (u	ıg/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth	ner	5.0		U	1.0		5.0
1,2,4-Trimethylbenz	zene	5.0		U	0.52		5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59		5.0
Naphthalene		5.0		U	0.47		5.0
Surrogate		%Rec		Qualifie	r Aco	ceptance	e Limits
1,2-Dichloroethane	-d4 (Surr)	112			62	- 123	
Toluene-d8 (Surr)		97			80	- 120	
4-Bromofluorobenz	ene (Surr)	102			75	- 120	
Dibromofluorometh	ane (Surr)	114			80	- 120	

Client: Science Applications International Corp

Lab Sample ID: Client Matrix:	180-13083-2 Water						
						Date Sampled: 08/0 Date Received: 08/0	
		8260B Volatile Orga	nic Compoun	ds (GC/MS	5)		
Analysis Method:	8260B	Analysis Batch:	180-43981		Instrument ID:	HP4	
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:	4080623.D	
Dilution:	1.0				Initial Weight/Volur	me: 5 mL	
Analysis Date:	08/06/2012 1729				Final Weight/Volun	ne: 5 mL	
Prep Date:	08/06/2012 1729						
Analyte		Result (u	g/L)	Qualifier	MDL	RL	
Benzene		7.0			0.99	5.0	
Toluene		5.0		U	0.85	5.0	
Ethylbenzene		5.0		U	0.62	5.0	
Xylenes, Total		15		U	2.0	15	
Cumene		5.0		U	0.53	5.0	
Methyl tert-butyl ethe		6.8			1.0	5.0	
1,2,4-Trimethylbenze		5.0		U	0.52	5.0	
1,3,5-Trimethylbenze	ene	5.0		U	0.59	5.0	
Naphthalene		5.0		U	0.47	5.0	
Surrogate		%Rec		Qualifier	- Acc	ceptance Limits	
1,2-Dichloroethane-c	d4 (Surr)	119			62 -	- 123	
Toluene-d8 (Surr)		95			80 -	- 120	
4-Bromofluorobenze	ne (Surr)	104			75 -	- 120	
Dibromofluorometha	ne (Surr)	116			80 -	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-121-01-0							
Lab Sample ID: Client Matrix:	180-13083-3 Water					Date Sampled: 08/01/2012 1135 Date Received: 08/03/2012 0930		
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)			
Analysis Method:	8260B	Analysis Batch:	180-43981		Instrument ID:		HP4	
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4080624.D	
Dilution:	1.0				Initial Weight/Volu	me:	5 mL	
Analysis Date:	08/06/2012 1753				Final Weight/Volur	ne:	5 mL	
Prep Date:	08/06/2012 1753							
Analyte		Result (u	ıg/L)	Qualifie	r MDL		RL	
Benzene		440		E	0.99		5.0	
Toluene		1300		Е	0.85		5.0	
Ethylbenzene		1600		E	0.62		5.0	
Xylenes, Total		3700			2.0		15	
Cumene		89			0.53		5.0	
Methyl tert-butyl eth		35			1.0		5.0	
1,2,4-Trimethylbenz		580		E	0.52		5.0	
1,3,5-Trimethylbenz	zene	230			0.59		5.0	
Naphthalene		330		E	0.47		5.0	
Surrogate		%Rec		Qualifie	r Aco	ceptance	Limits	
1,2-Dichloroethane	-d4 (Surr)	103			62	- 123		
Toluene-d8 (Surr)		101			80	- 120		
4-Bromofluorobenz	ene (Surr)	111			75	- 120		
Dibromofluorometh	ane (Surr)	96			80	- 120		

Client: Science Applications International Corp

Client Sample ID:	HD-MW-121-01-0						
Lab Sample ID: Client Matrix:	180-13083-3 Water						ampled: 08/01/2012 1135 aceived: 08/03/2012 0930
		8260B Volatile Orga	nic Compound	ds (GC/M	5)		
Analysis Method:	8260B	Analysis Batch:	180-44255		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4080713.D
Dilution:	100				Initial Weight/Volu	me:	5 mL
Analysis Date:	08/07/2012 1441	Run Type:	DL		Final Weight/Volu	me:	5 mL
Prep Date:	08/07/2012 1441						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		480		J	99		500
Toluene		6900			85		500
Ethylbenzene		1900			62		500
Xylenes, Total		7600			200		1500
Cumene		71		J	53		500
Methyl tert-butyl eth	ner	500		U	100		500
1,2,4-Trimethylbenz	zene	980			52		500
1,3,5-Trimethylbenz	zene	330		J	59		500
Naphthalene		500		U	47		500
Surrogate		%Rec		Qualifie	r Ac	ceptance	Limits
1,2-Dichloroethane	-d4 (Surr)	94			62	- 123	
Toluene-d8 (Surr)		101			80	- 120	
4-Bromofluorobenz	ene (Surr)	98			75	- 120	
Dibromofluorometh	ane (Surr)	102			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-77-01-0						
Lab Sample ID: Client Matrix:	180-13083-4 Water						mpled: 08/01/2012 1247 eceived: 08/03/2012 0930
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 10 08/07/2012 1505 08/07/2012 1505	Analysis Batch: Prep Batch:	180-44255 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	ime:	HP4 4080714.D 5 mL 5 mL
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		2000			9.9		50
Toluene		110			8.5		50
Ethylbenzene		140			6.2		50
Xylenes, Total		130		J	20		150
Cumene		24		J	5.3		50
Methyl tert-butyl eth		540			10		50
1,2,4-Trimethylbenz		33		J	5.2		50
1,3,5-Trimethylbenz	ene	13		J	5.9		50
Naphthalene		41		J	4.7		50
Surrogate		%Rec		Qualifie	r Ac	ceptance	Limits
1,2-Dichloroethane-	d4 (Surr)	90				- 123	
Toluene-d8 (Surr)		103				- 120	
4-Bromofluorobenze	. ,	96				- 120	
Dibromofluorometha	ane (Surr)	101			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-123-01-0						
Lab Sample ID: Client Matrix:	180-13083-5 Water						ampled: 08/02/2012 0813 eceived: 08/03/2012 0930
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-45069		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4081513.D
Dilution:	1.0				Initial Weight/Volu	me:	5 mL
Analysis Date:	08/15/2012 1454				Final Weight/Volu	me:	5 mL
Prep Date:	08/15/2012 1454						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth	ner	5.0		U *	1.0		5.0
1,2,4-Trimethylbenz		5.0		U	0.52		5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59		5.0
Naphthalene		2.8		JB*	0.47		5.0
Surrogate		%Rec		Qualifie	er Ac	ceptance	e Limits
1,2-Dichloroethane	-d4 (Surr)	72			62	- 123	
Toluene-d8 (Surr)		110			80	- 120	
4-Bromofluorobenz	ene (Surr)	96			75	- 120	
Dibromofluorometh	ane (Surr)	89			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-122-01-0						
Lab Sample ID: Client Matrix:	180-13083-6 Water						pled: 08/02/2012 0919 eived: 08/03/2012 0930
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method:	8260B	Analysis Batch:	180-45069		Instrument ID:	Н	P4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:	40	081514.D
Dilution:	1.0				Initial Weight/Volu	me: 5	mL
Analysis Date:	08/15/2012 1519				Final Weight/Volu	me: 5	mL
Prep Date:	08/15/2012 1519						
Analyte		Result (u	g/L)	Qualifie	er MDL		RL
Benzene		5.0		U	0.99		5.0
Toluene		5.0		U	0.85		5.0
Ethylbenzene		5.0		U	0.62		5.0
Xylenes, Total		15		U	2.0		15
Cumene		5.0		U	0.53		5.0
Methyl tert-butyl eth		5.0		U *	1.0		5.0
1,2,4-Trimethylbenz	zene	5.0		U	0.52		5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59		5.0
Naphthalene		1.1		JB*	0.47		5.0
Surrogate		%Rec		Qualifie	er Ac	ceptance L	imits
1,2-Dichloroethane-	-d4 (Surr)	76			62	- 123	
Toluene-d8 (Surr)		110			80	- 120	
4-Bromofluorobenzo	ene (Surr)	87			75	- 120	
Dibromofluorometha	ane (Surr)	89			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-118-01-0						
Lab Sample ID: Client Matrix:	180-13083-7 Water						Campled: 08/02/2012 1010 Received: 08/03/2012 0930
		8260B Volatile Orga	nic Compoun	ds (GC/MS	S)		
Analysis Method:	8260B	Analysis Batch:	180-45069		Instrument ID:		HP4
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4081515.D
Dilution:	10				Initial Weight/Volu	ime:	5 mL
Analysis Date:	08/15/2012 1543				Final Weight/Volu	me:	5 mL
Prep Date:	08/15/2012 1543						
Analyte		Result (u	g/L)	Qualifie	r MDL		RL
Benzene		39		J	9.9		50
Toluene		110			8.5		50
Ethylbenzene		600			6.2		50
Xylenes, Total		1400			20		150
Cumene		78			5.3		50
Methyl tert-butyl eth		50		U *	10		50
1,2,4-Trimethylbenz		600			5.2		50
1,3,5-Trimethylbenz	zene	210			5.9		50
Naphthalene		22		JB*	4.7		50
Surrogate		%Rec		Qualifie	r Ac	ceptanc	e Limits
1,2-Dichloroethane	-d4 (Surr)	76			62	- 123	
Toluene-d8 (Surr)		111			80	- 120	
4-Bromofluorobenz	ene (Surr)	94			75	- 120	
Dibromofluorometh	ane (Surr)	86			80	- 120	

Client: Science Applications International Corp

Client Sample ID:	HD-MW-124-01-0							
Lab Sample ID: Client Matrix:	180-13083-8 Water						Sampled: 08/02/2012 1 Received: 08/03/2012 0	
		8260B Volatile Orga	nic Compound	ds (GC/MS	5)			
Analysis Method:	8260B	Analysis Batch:	180-45069		Instrument ID:		HP4	
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		4081516.D	
Dilution:	40				Initial Weight/Volu	ime:	5 mL	
Analysis Date:	08/15/2012 1607				Final Weight/Volu	me:	5 mL	
Prep Date:	08/15/2012 1607							
Analyte		Result (u	g/L)	Qualifier	MDL		RL	
Benzene		2300			40		200	
Toluene		8400			34		200	
Ethylbenzene		960			25		200	
Xylenes, Total		9500			79		600	
Cumene		36		J	21		200	
Methyl tert-butyl eth	er	44		J *	41		200	
1,2,4-Trimethylbenz	ene	1200			21		200	
1,3,5-Trimethylbenz	ene	490			24		200	
Naphthalene		540		В*	19		200	
Surrogate		%Rec		Qualifier	Ac	ceptanc	e Limits	
1,2-Dichloroethane-	d4 (Surr)	70			62	- 123		
Toluene-d8 (Surr)		113				- 120		
4-Bromofluorobenze	· · ·	91				- 120		
Dibromofluorometha	ane (Surr)	86			80	- 120		

Client: Science Applications International Corp

Client Sample ID:	TRIP BLANK 1					
Lab Sample ID: Client Matrix:	180-13083-9 Water					Date Sampled: 08/02/2012 1200 Date Received: 08/03/2012 0930
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method:	8260B 5030B	Analysis Batch: Prep Batch:	180-44461 N/A		istrument ID: ab File ID:	HP7 7080918.D
Dilution:	1.0 08/09/2012 1544			In	iitial Weight/Volum	ne: 5 mL
Analysis Date: Prep Date:	08/09/2012 1544			FI	inal Weight/Volum	e: 5 mL
Analyte		Result (u	g/L)	Qualifier	MDL	RL
Benzene		5.0		U	0.99	5.0
Toluene		5.0		U	0.85	5.0
Ethylbenzene		5.0		U	0.62	5.0
Xylenes, Total		15		U	2.0	15
Cumene		5.0		U	0.53	5.0
Methyl tert-butyl eth		5.0		U	1.0	5.0
1,2,4-Trimethylbenz		5.0		U	0.52	5.0
1,3,5-Trimethylbenz	zene	5.0		U	0.59	5.0
Naphthalene		5.0		U	0.47	5.0
Surrogate		%Rec		Qualifier	Acce	eptance Limits
1,2-Dichloroethane	-d4 (Surr)	80			62 -	123
Toluene-d8 (Surr)		87			80 -	120
4-Bromofluorobenz	ene (Surr)	88			75 -	120
Dibromofluorometh	ane (Surr)	92			80 -	120

Quality Control Results

Job Number: 180-13083-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-13083-1	HD-MW-125-01-0	114	112	97	102
180-13083-2	HD-MW-120-01-0	116	119	95	104
180-13083-3	HD-MW-121-01-0	96	103	101	111
180-13083-3 DL	HD-MW-121-01-0 DL	102	94	101	98
180-13083-4	HD-MW-77-01-0	101	90	103	96
180-13083-5	HD-MW-123-01-0	89	72	110	96
180-13083-6	HD-MW-122-01-0	89	76	110	87
180-13083-7	HD-MW-118-01-0	86	76	111	94
180-13083-8	HD-MW-124-01-0	86	70	113	91
180-13083-9	TRIP BLANK 1	92	80	87	88
MB 180-43981/3		92	105	106	110
MB 180-44255/3		91	106	108	103
MB 180-44461/4		103	85	81	91
MB 180-45069/3		98	93	109	93
LCS 180-43981/4		103	108	100	101
LCS 180-44255/4		103	103	103	98
LCS 180-44461/6		93	81	84	89
LCS 180-45069/6		96	91	104	95
LCSD 180-44461/7		98	81	88	92
LCSD 180-45069/7		101	106	98	101
180-12974-A-9 MS		103	93	102	101
180-13069-M-9 MS		101	108	99	96
180-12974-B-9 MSD		102	92	101	100
180-13069-M-9 MSD		98	102	99	97

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-123
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	75-120

Leach Date:

Job Number: 180-13083-1

Client: Science Applications International Corp

Method Blank - Batch: 180-43981

Method: 8260B Preparation: 5030B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 180-43981/3 Water 1.0 08/06/2012 0903 08/06/2012 0903 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	180-43981 N/A N/A ug/L			HP4 4080603.D 5 mL 5 mL	
Analyte		Res	ult	Qual	MDL	RL	
Benzene		5.0		U	0.99	5.0	
Toluene		5.0		U	0.85	5.0	
Ethylbenzene		5.0		U	0.62	5.0	
Xylenes, Total		15		U	2.0	15	
Cumene		5.0		U	0.53	5.0	
Methyl tert-butyl et	her	5.0		U	1.0	5.0	
1,2,4-Trimethylben	izene	5.0		U	0.52	5.0	
1,3,5-Trimethylben	izene	5.0		U	0.59	5.0	
Naphthalene		5.0		U	0.47	5.0	
Surrogate		%	Rec		Acceptance Lim	iits	
1,2-Dichloroethane	e-d4 (Surr)	1	05		62 - 123		
Toluene-d8 (Surr)		1	06		80 - 120		
4-Bromofluorobenz	zene (Surr)	1	10		75 - 120		
Dibromofluorometh	nane (Surr)	g	92		80 - 120		

Lab Control Sample - Batch: 180-43981

N/A

Method: 8260B Preparation: 5030B

Lab Sample ID:	LCS 180-43981/4	Analysis Batch:	180-43981	Instrument ID:	HP4
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	4080604.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	08/06/2012 0937	Units:	ug/L	Final Weight/Volume:	5 mL
Prep Date:	08/06/2012 0937				

Spike Amount	Result	% Rec.	Limit	Qual
40.0	40.1	100	80 - 120	
40.0	40.2	100	80 - 124	
40.0	40.5	101	79 - 124	
120	124	104	81 - 121	
40.0	42.6	106	73 - 130	
40.0	39.7	99	53 - 122	
40.0	40.2	101	71 - 132	
40.0	41.0	102	75 - 135	
40.0	40.6	101	10 - 144	
%	Rec	А	cceptance Limits	
1	08		62 - 123	
1	00		80 - 120	
1	01		75 - 120	
1	03		80 - 120	
	40.0 40.0 40.0 120 40.0 40.0 40.0 40.0 40.0 40.0 1 1 1	40.0 40.1 40.0 40.2 40.0 40.5 120 124 40.0 42.6 40.0 39.7 40.0 40.2 40.0 40.2 40.0 40.2 40.0 40.2 40.0 41.0	40.0 40.1 100 40.0 40.2 100 40.0 40.5 101 120 124 104 40.0 42.6 106 40.0 39.7 99 40.0 40.2 101 40.0 40.2 101 40.0 40.2 101 40.0 40.2 101 40.0 40.6 101 % Rec A 108 100 101 101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Quality Control Results

Job Number: 180-13083-1

Method: 8260B

Preparation: 5030B

Client: Science Applications International Corp

Matrix Spike/

Matrix Spike Dupl	icate Recovery	Report - Batch	: 180-43981

MS Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	180-12974-A-9 MS Water 1.0 08/06/2012 1004 08/06/2012 1004 N/A	Prep	lysis Batch:) Batch: ch Batch:	180-43981 N/A N/A			HP4 4080605.D 5 mL 5 mL 5 mL	
MSD Lab Sample ID Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	0: 180-12974-B-9 MSD Water 1.0 08/06/2012 1027 08/06/2012 1027 N/A	Prep	lysis Batch: o Batch: ch Batch:	180-43981 N/A N/A			HP4 4080606.D 5 mL 5 mL 5 mL	
			Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Benzene		101	100	80 - 120	1	20		
Toluene		101	101	80 - 124	1	20		

Benzene 101 100 80 - 120 1 20 Toluene 101 101 80 - 124 1 20 Ethylbenzene 102 101 79 - 124 1 25 Xylenes, Total 107 81 - 121 20 Cumene 110 105 73 - 130 5 20 Methyl tert-butyl ether 93 92 53 - 122 1 20 1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120 Dibromofluoromethane (Surr) 103 102 80 - 120								
Ethylbenzene 102 101 79 - 124 1 25 Xylenes, Total 107 81 - 121 1 25 Cumene 110 105 73 - 130 5 20 Methyl tert-butyl ether 93 92 53 - 122 1 20 1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Benzene	101	100	80 - 120	1	20		
Xylenes, Total 107 81 - 121 Cumene 110 105 73 - 130 5 20 Methyl tert-butyl ether 93 92 53 - 122 1 20 1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Toluene	101	101	80 - 124	1	20		
Cumene 110 105 73 - 130 5 20 Methyl tert-butyl ether 93 92 53 - 122 1 20 1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Ethylbenzene	102	101	79 - 124	1	25		
Methyl tert-butyl ether 93 92 53 - 122 1 20 1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Xylenes, Total	107		81 - 121				
1,2,4-Trimethylbenzene 102 104 71 - 132 2 35 1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Cumene	110	105	73 - 130	5	20		
1,3,5-Trimethylbenzene 103 104 75 - 135 1 20 Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Methyl tert-butyl ether	93	92	53 - 122	1	20		
Naphthalene 102 116 10 - 144 13 35 Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	1,2,4-Trimethylbenzene	102	104	71 - 132	2	35		
Surrogate MS % Rec MSD % Rec Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	1,3,5-Trimethylbenzene	103	104	75 - 135	1	20		
1,2-Dichloroethane-d4 (Surr) 93 92 62 - 123 Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Naphthalene	102	116	10 - 144	13	35		
Toluene-d8 (Surr) 102 101 80 - 120 4-Bromofluorobenzene (Surr) 101 100 75 - 120	Surrogate		MS % Rec	MSD 9	% Rec		Acceptance Limits	
4-Bromofluorobenzene (Surr) 101 100 75 - 120	1,2-Dichloroethane-d4 (Surr)		93	92			62 - 123	
	Toluene-d8 (Surr)		102	101			80 - 120	
Dibromofluoromethane (Surr) 103 102 80 - 120	4-Bromofluorobenzene (Surr)		101	100			75 - 120	
	Dibromofluoromethane (Surr)		103	102			80 - 120	

Quality Control Results

Job Number: 180-13083-1

Client: Science Applications International Corp

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 180-43981

Method: 8260B
Preparation: 5030B

MS Lab Sample ID:	180-12974-A-9 MS	Units: ug/L	MSD Lab Sample ID:	180-12974-B-9 MSD
Client Matrix:	Water		Client Matrix:	Water
Dilution:	1.0		Dilution:	1.0
Analysis Date:	08/06/2012 1004		Analysis Date:	08/06/2012 1027
Prep Date:	08/06/2012 1004		Prep Date:	08/06/2012 1027
Leach Date:	N/A		Leach Date:	N/A

Analyte	Sample Result/Q	ual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Benzene	5.0	U	40.0	40.0	40.3	40.0
Toluene	5.0	U	40.0	40.0	40.5	40.3
Ethylbenzene	5.0	U	40.0	40.0	40.8	40.3
Kylenes, Total	15	U	120	120	128	125
Cumene	5.0	U	40.0	40.0	44.2	42.1
Methyl tert-butyl ether	5.0	U	40.0	40.0	37.1	36.8
I,2,4-Trimethylbenzene	5.0	U	40.0	40.0	40.9	41.7
I,3,5-Trimethylbenzene	5.0	U	40.0	40.0	41.3	41.8
Naphthalene	5.0	U	40.0	40.0	40.9	46.5

Shipping and Receiving Documents

D200 film. FedEx Retrie	ess Package Service • To most locations. Re Priority Voerright 5 Red Ex Standard Siness months - Finder	internative definition of Monthy Standard Dativer WDT workston. Internative SATURAY (Distort): staticated FedEx 2020y - Ted law statisticated FedEx 2020y - Ted law statisticated on Monthy with workshow stramts support of Monthy Part (Converting).	udess SATURDAY Delivery is selected. Express Freight Service •• 1 Eader 10 av Ervicinty	tt Baokúng No.	8 Security tracky. There we are not set of the second seco	FedEx 2 Envelope* 2	6 Special Handling and Delivery Signature Options 3 SATURDAY DELIVERY		Does this stupment contain dangerous goods?		ordinated in the found part of the second manufacture exception of the cargo Aircrit	Enter FadEx Acct. No. or Credit Card 1	har a state of the second seco	INTED IN U.S.A. SAY				
Express US Airbill B709 1952 2569	Sender's FedEx & Account Number	Wad	J	Allertown Blud	State PA ZIP 17113 Up 1711	g Reference	Mole Receiving And 963- 2444	HOLD Weekday HOLD Weekday Her Facts andreas natives and	DIAC		alt a HOLD option is selected.	State 1 1 21P		8709 1952 2569				
Express	11 From 8. 2. 18	Sender's Emily Name	Company SATC	Address 6310	Harrisburg	~~~~	1800.G	Company lest Arevica P:	COL Address 301 Alpho		Print Factor bounders but		 a					
<u> </u>	U	<u>P</u>	- (ر		(U		ı ب				Ú 				

THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica Laboratories, Inc.					Container No.	SDG No.			Sample Specific Notes:					80							tan 1 month)	Months	Date/Time:	Date (Time -	8-3-17 1930	Date/Time:	
the for	Data Submitted. Divine	Carrier:																			4 4 4 4 4 4	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Disposal By Lab	Сотралу:		4.96	Company:	
Chain of Custody Record	Site Contact: Emily Wade	Lab Contact: Carrie Gamber			рәра	Dale:	121111	aous	(£0925		X		X	X	X	×	x	x			4;		Thknown Return To Client X Dispo Project Specific Analyte Lists	Received by Fed-Ex	Date/Time: Received by: 7	IN ONU	Keccaved by:	
	rs	11-8102	nd Time				•		# of Matrix Cont.	Water 3							ter Water 3	k Water 2					' I .	 Date/Time:	Date/Time:			-
180- 13083	Rodney Mye	-1439 / 717-9	Analysis Turnaround Time	Calendar (C) or Work Days (W)	TAT if different from Below: Standard	2 weeks	l week	2 days I dav		Groundwater					 		7 Groundwater		Temp Blank				e Deliverable					
180-	Project Manager: Rodney Myers	Tel/Fax: 717-468-1439 /717-901-8102	Ana	Calendar (C)] [][Sample Sample Date Time	8/1/2012 9:06	8/1/2012 10:24	8/1/2012 11:35	8/1/2012 12:47	8/2/2012 8:13	8/2/2012 9:19	8/2/2012 10:10	8/2/2012 11:27	7/27/2012 12:00	8/2/2012 12:00	-HNO3- E-NS			CLP Like I	Company: SAIC	Company:	Company-		
TestAmerica Pittsburgh 301 Alpha Drive Pittsburgh, PA 15238 Phone 412.963.7058 fax 412.963.2470		6310 Allonthurn Dhud	Harrichuro DA 17110		(717) 901-8109	Project Name: HD Bldg 45 UST Characterization	Site: York PA	Quote # 18009897-0	Sample Identification	HD-MW-125-01-0	HD-MW-120-01-0	HD-MW-121-01-0	8 BD-WW-77-01-0	HD-MW-123-01-0	HD-MW-122-01-0	HD-MW-118-01-0 8.	HD-MW-124-01-0 8,	Trip Blank 1 7/	Tcmp Blank I 8/	Preservation Used: 1= Icc. 2-HC: 1= H2SO4 4-HNO2. c-M-ONY 2 Y		Possible Hazard Identification	s/QC Rec	Relinquished W: Matthew J. Ogan	Relinquished by: Cor	Relinquished by: Cor		

Page 498 of 499

Client: Science Applications International Corp

Login Number: 13083 List Number: 1 Creator: O'Donnell, Brandon R

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-13083-1

List Source: TestAmerica Pittsburgh

ANALYTICAL REPORT

Job Number: 180-14382-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release. Jill L Colussy Project Manager I 9/29/2012 8:54 AM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 09/29/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	11
Executive Summary	12
Method Summary	13
Method / Analyst Summary	14
Sample Datasheets	15
Surrogate Summary	17
QC Data Summary	18
Data Qualifiers	21
QC Association Summary	22
Lab Chronicle	23
Reagent Traceability	24
Certification Summary	31
Organic Sample Data	32
GC/MS VOA	32
Method 8260B	32
Method 8260B QC Summary	33
Method 8260B Sample Data	41
Standards Data	58
Method 8260B ICAL Data	58
Method 8260B CCAL Data	162
Raw QC Data	174
Method 8260B Tune Data	174

Table of Contents

Method 8260B Blank Data	186
Method 8260B LCS/LCSD Data	191
Method 8260B Run Logs	201
Shipping and Receiving Documents	204
Client Chain of Custody	205
Sample Receipt Checklist	208

CASE NARRATIVE

Client: Science Applications International Corp

Project: Harley Davidson

Report Number: 180-14382-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 09/13/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.8 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Naphthalene was detected in the method blankd for batch 180-49307 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

SAMPLE SUMMARY

Client: Science Applications International Corp

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
180-14382-1	HD-MW-160-01-0	Water	09/12/2012 1138	09/13/2012 0900
180-14382-2	TRIP BLANK 1	Water	09/12/2012 0800	09/13/2012 0900

EXECUTIVE SUMMARY - Detections

Client: Science Applications International Corp

Lab Sample ID Clie	ent Sample ID			Reporting		
Analyte		Result	Qualifier	Limit	Units	Method
180-14382-1	HD-MW-160-01-0					
Benzene		180		5.0	ug/L	8260B
Toluene		17		5.0	ug/L	8260B
Ethylbenzene		12		5.0	ug/L	8260B
Xylenes, Total		20		15	ug/L	8260B
Cumene		1.2	J	5.0	ug/L	8260B
1,2,4-Trimethylbenzene		3.4	J	5.0	ug/L	8260B
Naphthalene		4.3	JB	5.0	ug/L	8260B
180-14382-2	TRIP BLANK 1					
Naphthalene		1.8	JВ	5.0	ug/L	8260B

METHOD SUMMARY

Client: Science Applications International Corp

Job Number: 180-14382-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL PIT	SW846 8260B	
Purge and Trap	TAL PIT		SW846 5030B

Lab References:

TAL PIT = TestAmerica Pittsburgh

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Science Applications International Corp

Method

SW846 8260B

Analyst

Journet, Patrick

PJ

Job Number: 180-14382-1

Page 14 of 208

Client: Science Applications International Corp

Client Sample ID:	HD-MW-160-01-0							
Lab Sample ID: Client Matrix:	180-14382-1 Water						ampled: 09/12/2012 1138 eceived: 09/13/2012 0900	
		8260B Volatile Orga	nic Compound	ds (GC/M	S)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 09/21/2012 1906 09/21/2012 1906	Analysis Batch: Prep Batch:	180-49307 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu		HP7 70921N13.D 5 mL 5 mL	
Analyte		Result (u	g/L)	Qualifie	r MDL		RL	
Benzene		180			0.99		5.0	
Toluene		17			0.85		5.0	
Ethylbenzene		12			0.62		5.0	
Xylenes, Total		20			2.0		15	
Cumene		1.2		J	0.53		5.0	
Methyl tert-butyl eth		5.0		U	1.0		5.0	
1,2,4-Trimethylbenz		3.4		J	0.52		5.0	
1,3,5-Trimethylbenz	ene	5.0		U	0.59		5.0	
Naphthalene		4.3		JΒ	0.47		5.0	
Surrogate		%Rec		Qualifie	r Ac	ceptance	e Limits	
1,2-Dichloroethane-	d4 (Surr)	99			62	- 123		
Toluene-d8 (Surr)		90		80 - 120				
4-Bromofluorobenze	· · ·	86			75 - 120			
Dibromofluorometha	ane (Surr)	103		80 - 120				

Client: Science Applications International Corp

Client Sample ID:	TRIP BLANK 1							
Lab Sample ID: Client Matrix:	180-14382-2 Water					•	d: 09/12/2012 0800 ed: 09/13/2012 0900	
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)			
Analysis Method:	8260B	Analysis Batch:	180-49307		Instrument ID:	HP7		
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:	7092	1N14.D	
Dilution:	1.0				Initial Weight/Volu	me: 5 m	L	
Analysis Date:	09/21/2012 1931				Final Weight/Volur	me: 5 m	L	
Prep Date:	09/21/2012 1931							
Analyte		Result (u	g/L)	Qualifie	r MDL		RL	
Benzene		5.0		U	0.99		5.0	
Toluene		5.0		U	0.85		5.0	
Ethylbenzene		5.0		U	0.62		5.0	
Xylenes, Total		15		U	2.0		15	
Cumene		5.0		U	0.53		5.0	
Methyl tert-butyl eth	ner	5.0		U	1.0		5.0	
1,2,4-Trimethylbenz	zene	5.0		U	0.52		5.0	
1,3,5-Trimethylbenz	zene	5.0		U	0.59		5.0	
Naphthalene		1.8		JВ	0.47		5.0	
Surrogate		%Rec		Qualifie	r Ac	ceptance Limi	ts	
1,2-Dichloroethane-	-d4 (Surr)	111			62	- 123		
Toluene-d8 (Surr)		93	80 - 120					
4-Bromofluorobenz	ene (Surr)	90			75	- 120		
Dibromofluorometh	ane (Surr)	110		80 - 120				

Quality Control Results

Job Number: 180-14382-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Water

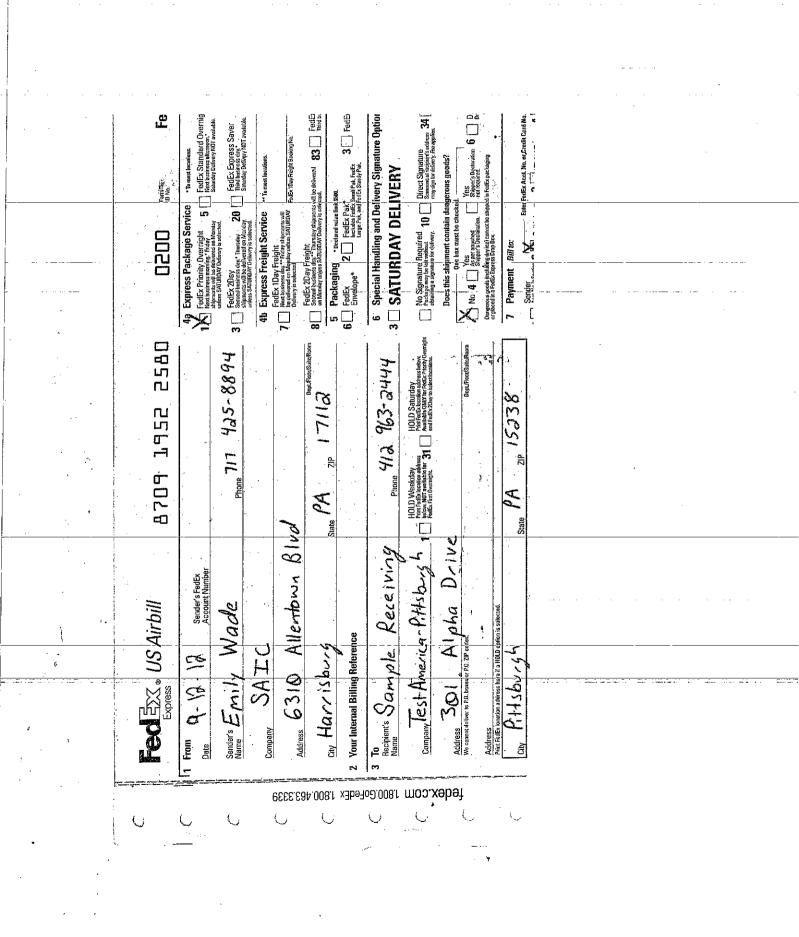
		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
180-14382-1	HD-MW-160-01-0	103	99	90	86
180-14382-2	TRIP BLANK 1	110	111	93	90
MB 180-49307/4		96	100	92	86
LCS 180-49307/6		85	91	94	90
LCSD 180-49307/7		84	90	94	90

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	80-120
DCA = 1,2-Dichloroethane-d4 (Surr)	62-123
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	75-120

Quality Control Results

Method: 8260B Preparation: 5030B

Job Number: 180-14382-1


Client: Science Applications International Corp

Method Blank - Batch: 180-49307

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 180-49307/4 Water 1.0 09/21/2012 1511 09/21/2012 1511 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	180-49307 N/A N/A ug/L			HP7 70921N05.D 5 mL 5 mL	
Analyte		Result		Qual	MDL	RL	
Benzene		5.0		U	0.99	5.0	
Toluene		5.0		U	0.85	5.0	
Ethylbenzene		5.0		U	0.62	5.0	
Xylenes, Total		15		U	2.0	15	
Cumene		5.0		U	0.53	5.0	
Methyl tert-butyl ether		5.0		U	1.0	5.0	
1,2,4-Trimethylbenzene		5.0		U	0.52	5.0	
1,3,5-Trimethylbenzene		5.0		U	0.59	5.0	
Naphthalene		3.02		J	0.47	5.0	
Surrogate		% Rec		Acceptance Limits			
1,2-Dichloroethane-d4 (Surr)			100		62 - 123		
Toluene-d8 (Surr)		92		80 - 120			
4-Bromofluorobenzene (Surr)		86		75 - 120			
Dibromofluoromethane (Surr)		96		80 - 120			

Page 18 of 208

Shipping and Receiving Documents

Page 205 of 208

Page 206 of 208

.....

Login Container Summary Report

180-14382

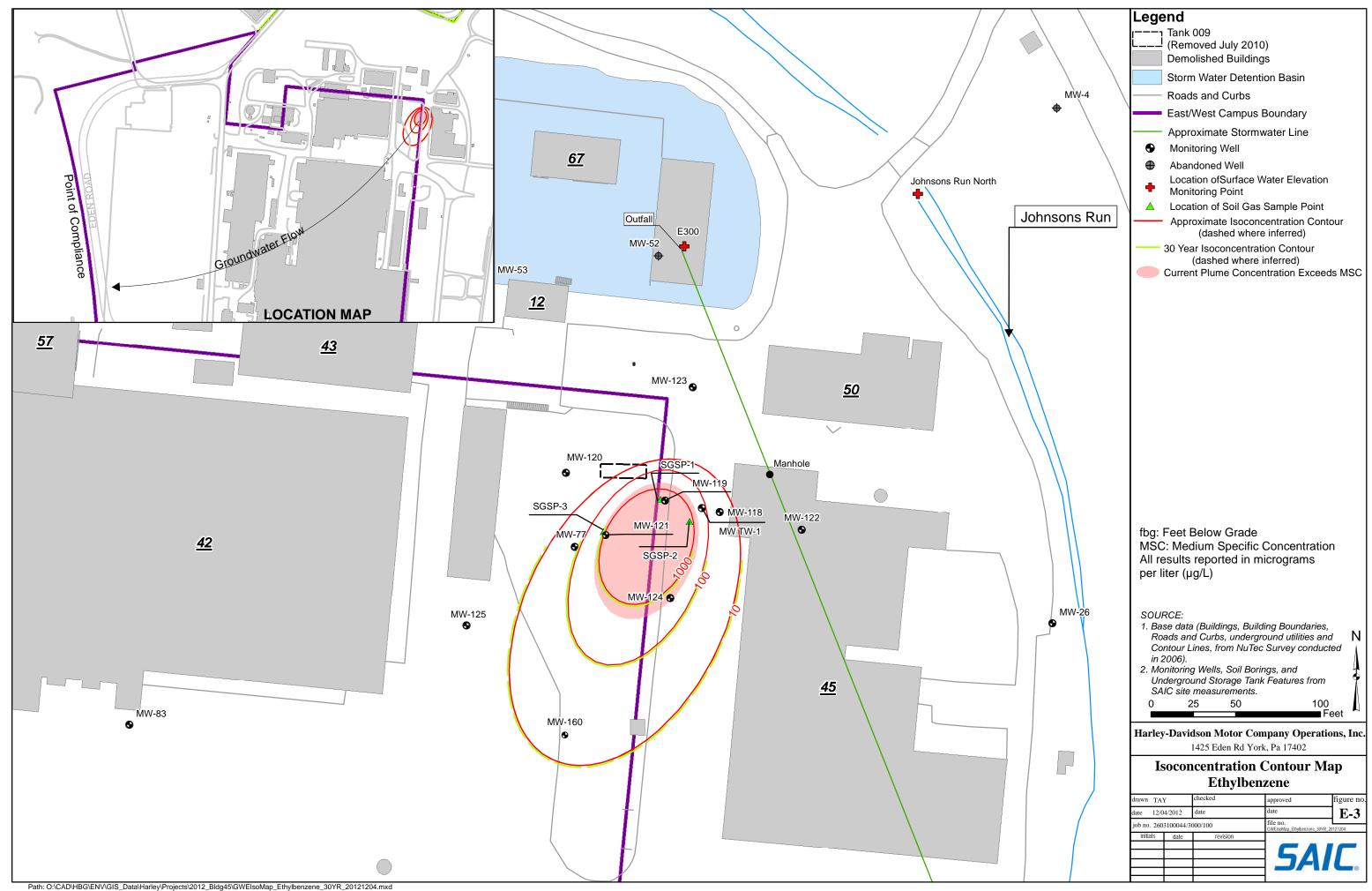
Temperature readings:						
Client Sample ID	Lab ID	Container Type	<u>Container</u> <u>pH</u>	<u>Preservative</u> Added (mls)	<u>Lot #</u>	
HD-MW-160-01-0	180-14382-A-1	Voa Vial 40ml - Hydrochloric Acid	P			
HD-MW-160-01-0	180-14382-B-1	Voa Vial 40ml - Hydrochloric Acid	,			
HD-MW-160-01-0	180-14382-C-1	Voa Vial 40ml - Hydrochloric Acid	1	·		
TRIP BLANK 1	180-14382-A-2	Voa Vial 40ml - Hydrochloric Acid	\downarrow			
TRIP BLANK 1	180-14382-B-2	Voa Vial 40ml - Hydrochloric Acid	<u> </u>	- <u></u> <u></u>		<u> </u>
		· .				
			-			
			······································			
· · · · · · · · · · · · · · · · · · ·						
· · · · · ·						
				• ·		
· · · · · ·		·				

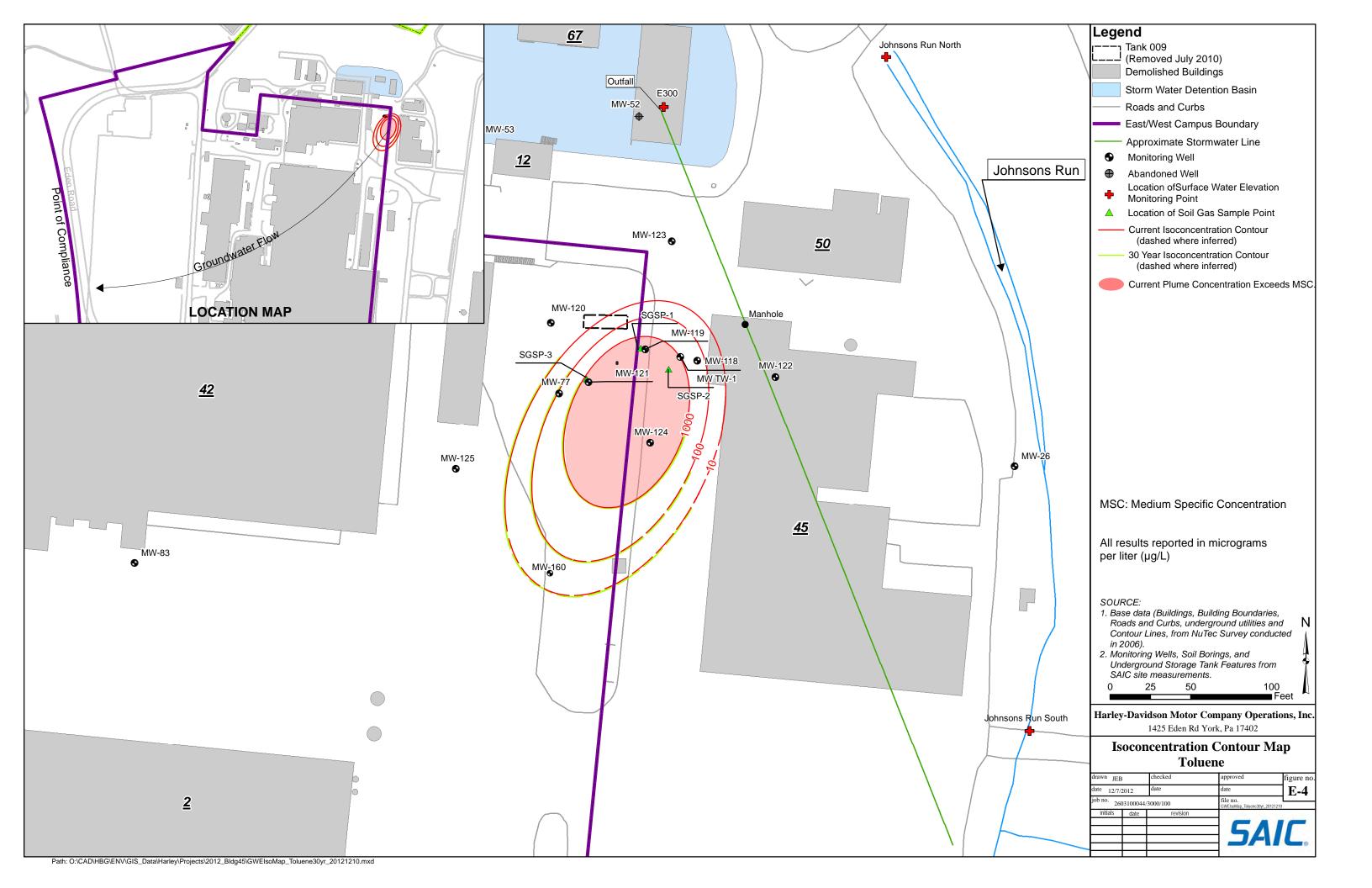
Client: Science Applications International Corp

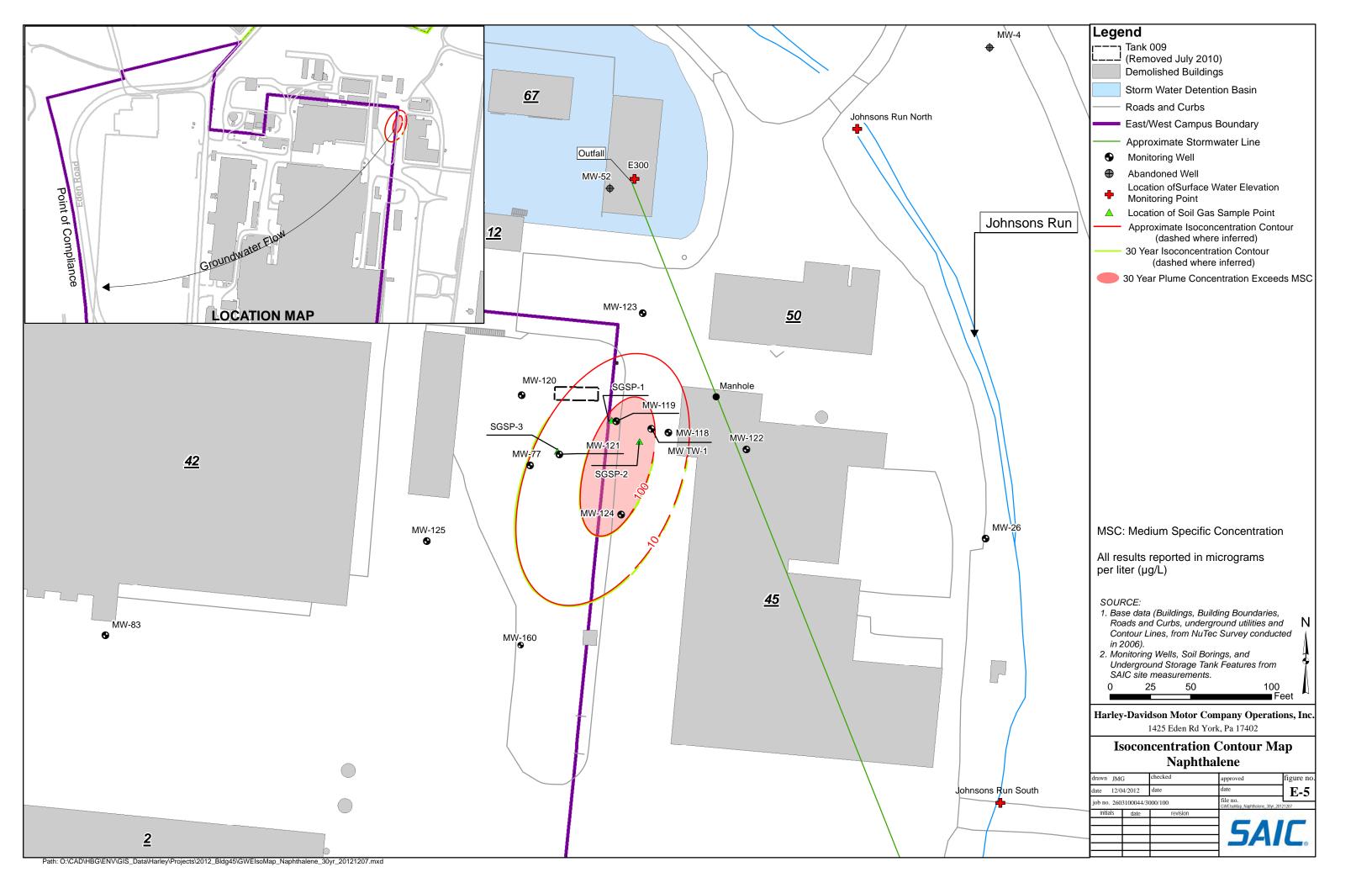
Login Number: 14382 List Number: 1 Creator: Ras, Erin F

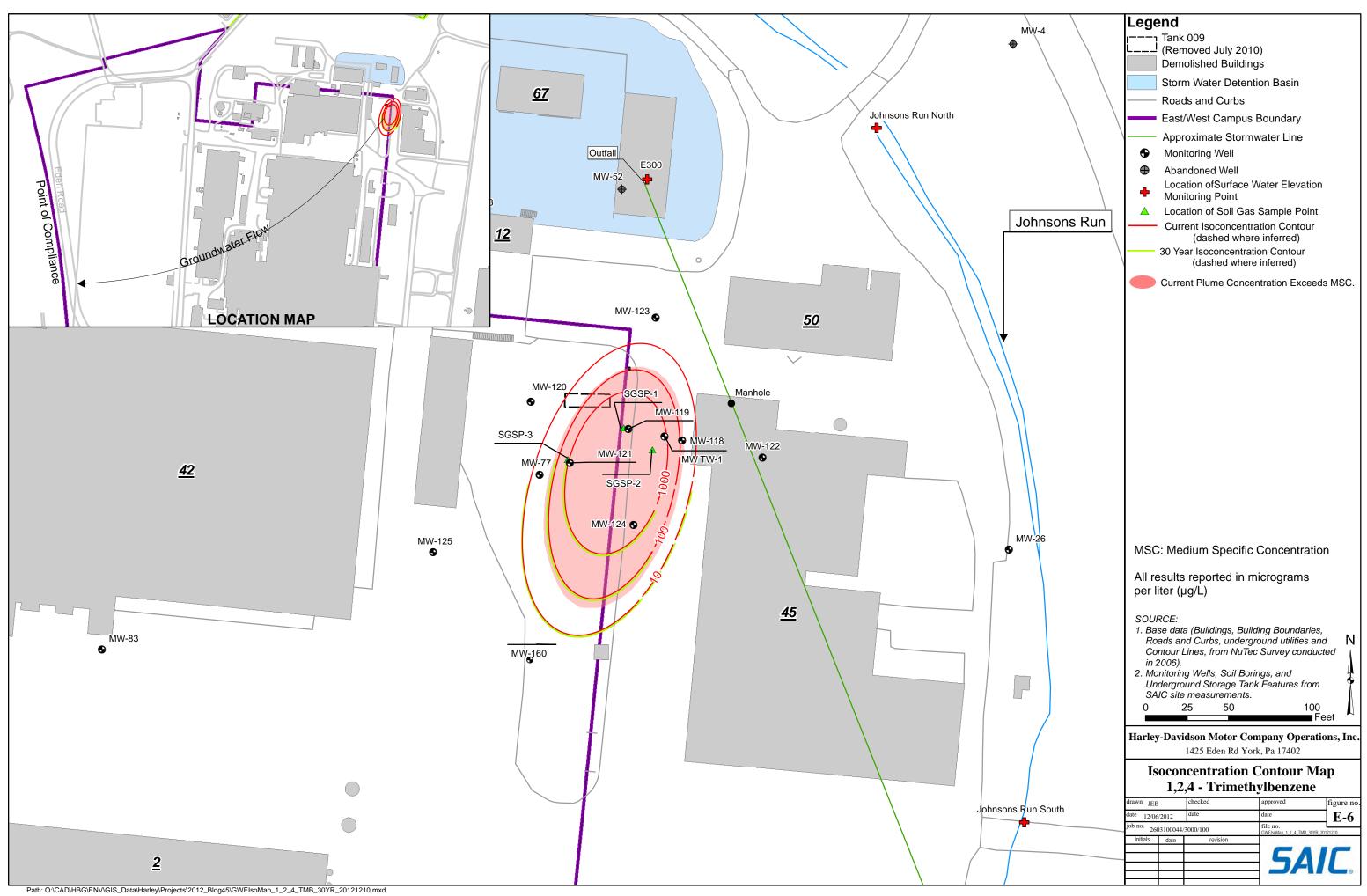

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

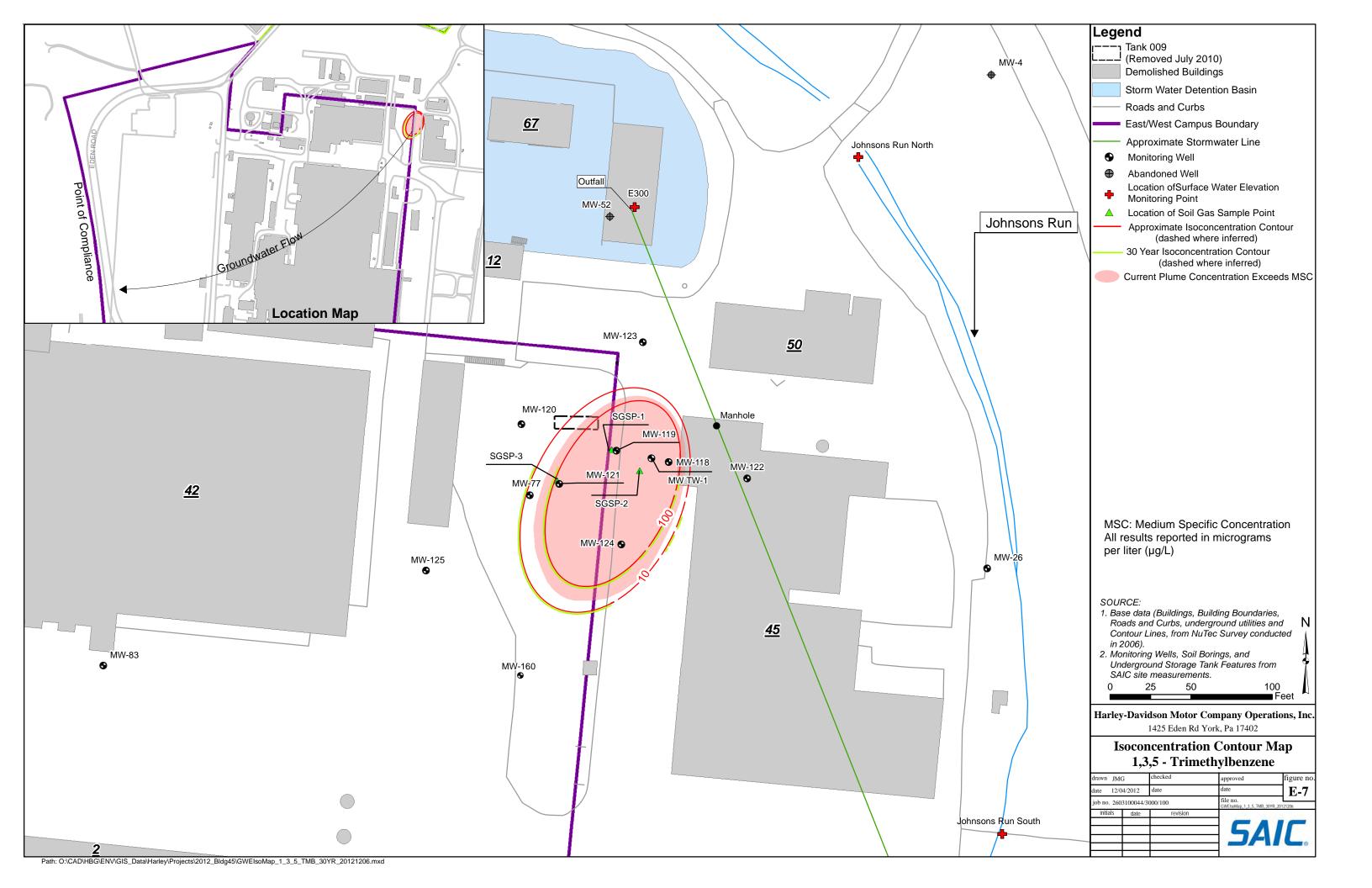
Job Number: 180-14382-1


List Source: TestAmerica Pittsburgh


APPENDIX E


Dissolved-Phase Plume Schematics





APPENDIX F

Investigation Derived Waste (IDW) Disposal Documentation

					10/3/12
Y	NON-HA	REPUE SERVICES, IN ZARDOUS WAST			084041
GENERATOR INF	ORMATION	CUS	TOMER/BILLING	INFORMATION	
Generator Name: Ha	rley-Davidson Motor C	o. Ops., Inc. Billing	Name: Enviri	te of Pennsylv	vania, Inc.
Address:14	25 Eden Road	Addre	ss: 730	Vogelsong Road	3
	County: York			County:	
	Zip: 17402			Zip	
				∠ıp	
Site Location (if differ	ent):				
		-			
Republic Services Approval Number	Description	of Waste	Volume/Weight	Expiration Date	Container Type
10 10670	Contaminated Soil-De	bris/Spill Residue/			
	Drill Cuttings		8.5U+	$\hat{\mathbf{O}}$	CY
	Please provide weig	ht to generator		•	
	York Facility Remed	iation Trust Fund			
that the above named	the above described materials are d materials are properly classified ling to the applicable regulations R Window	d, described, packaged, mar s of the Department of Transp	ked and labeled, ar	61 or any applicable Id are in proper con	e state law. Further, dition for <u>09-14-12</u> Date Shipped
		TRANSPORTER INFORM	IATION		
	Transporter Name: <u>Envirit</u>	e of PA, Inc. DOT N	umber: PADO	10154045	
	Address: 730 Vogels	ong Road Truck I	Number:		
jan shundar ya s	York, PA 1				· · · · · · ·
	waste or other regulated substate te identified above, to the best o		ed to the waste whi	e in my custody. Th	e waste transported in
Name of Authorized Age	Cleinger	X Signature			9-/1/- Date Delivered
		DISPOSAL SITE INFORM			
	Site Name: Modern Landf	Phone	Number: 717-2	46-2686	

4400 Mt. Pisgah Road, York, PA 17406 Address:

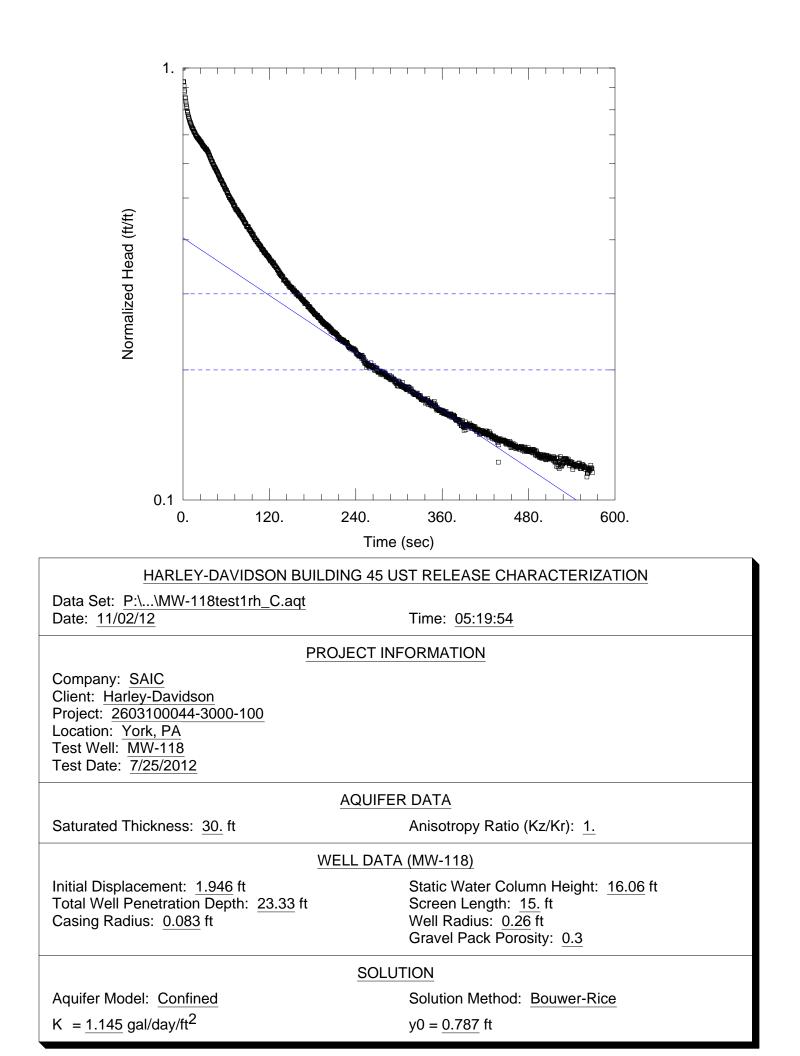
White. Green. Canary - Landfill

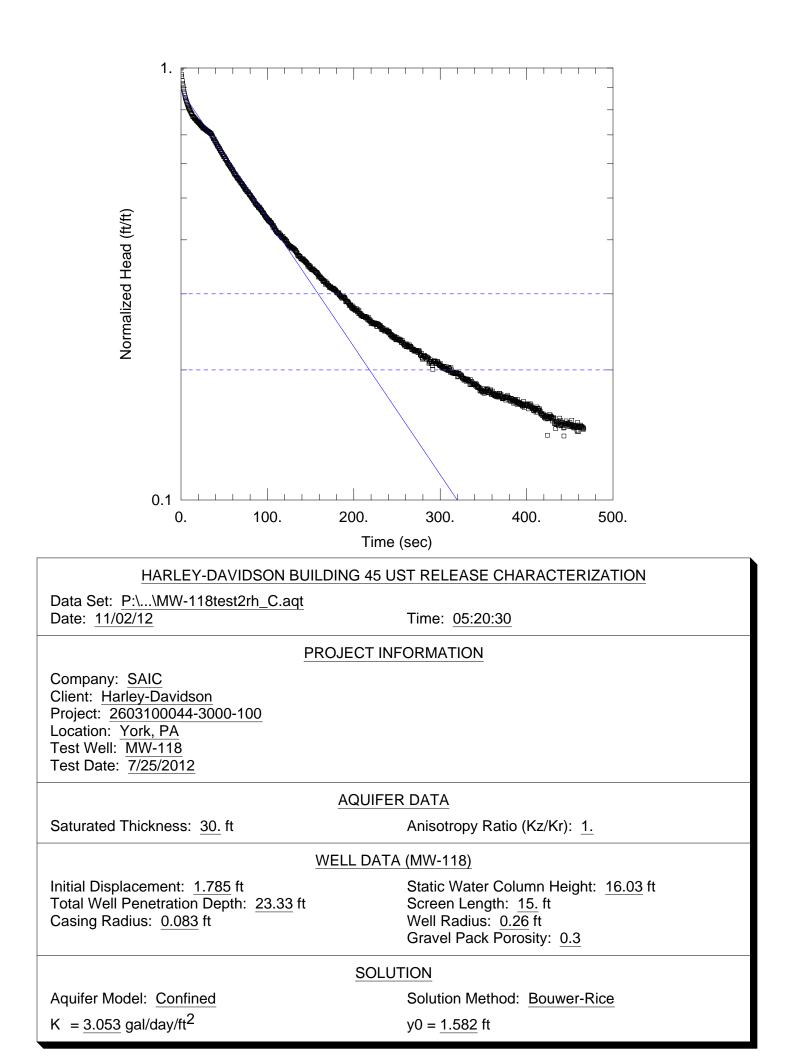
I hereby acknowledge receipt of the above described materials.

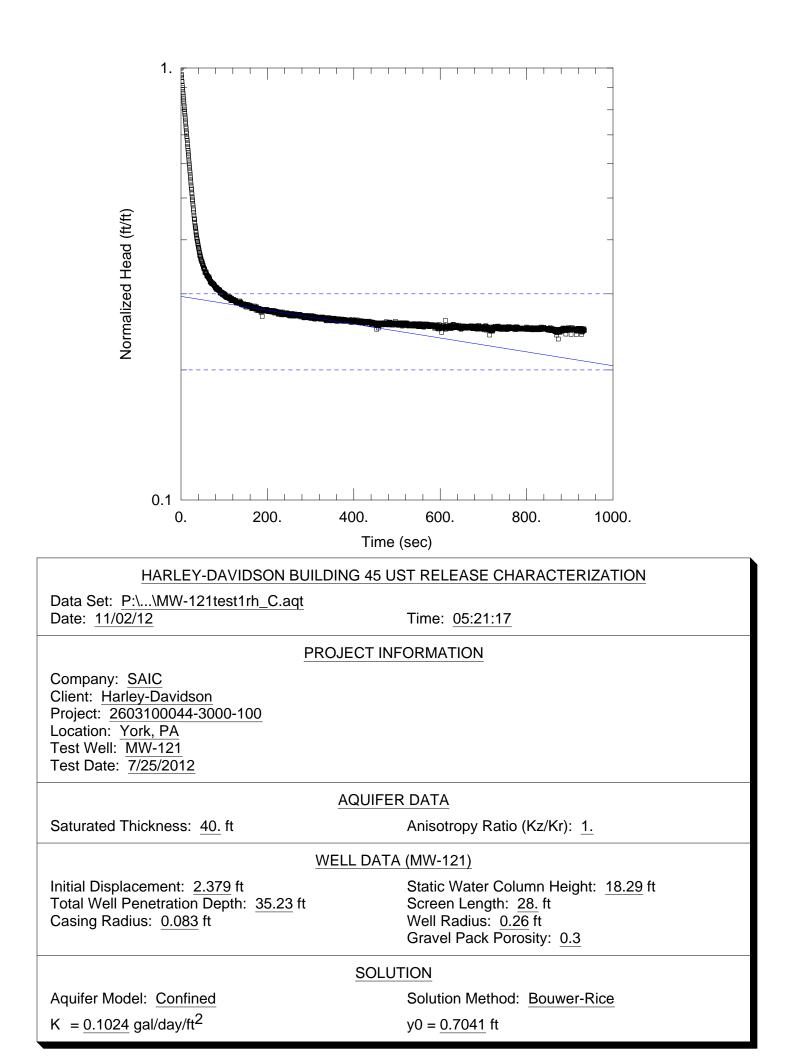
X

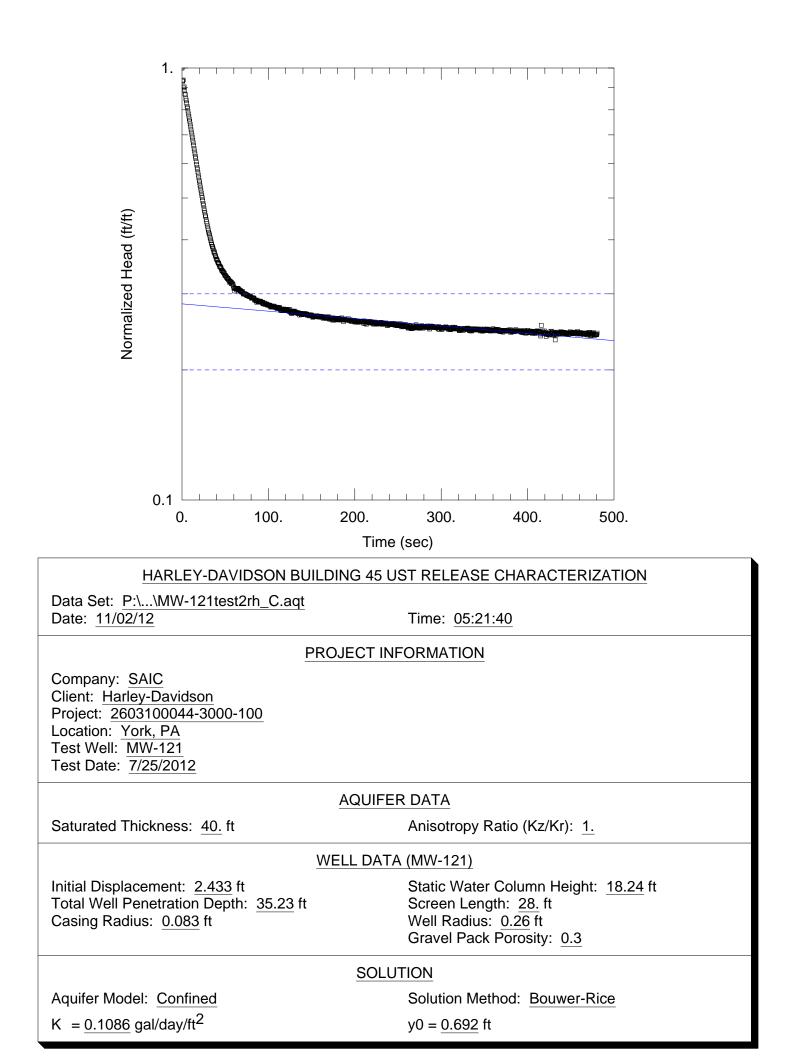
Signature Pink - Hauler

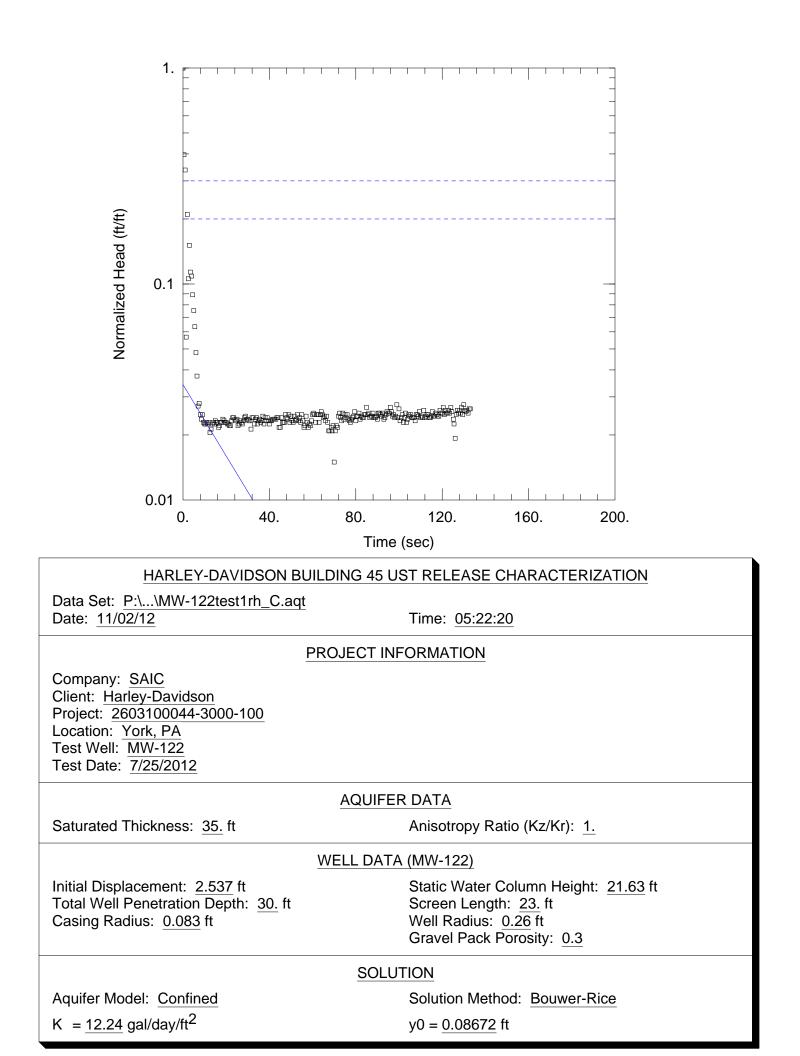
Goldenrod - Generator

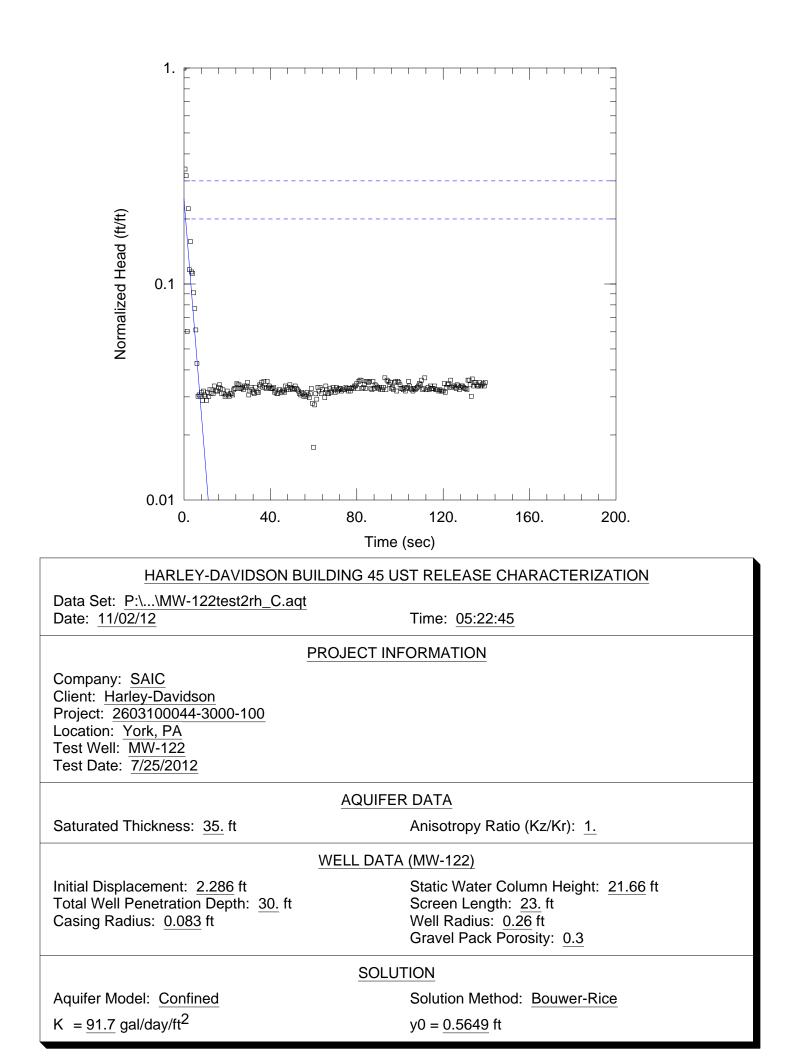

Date Received

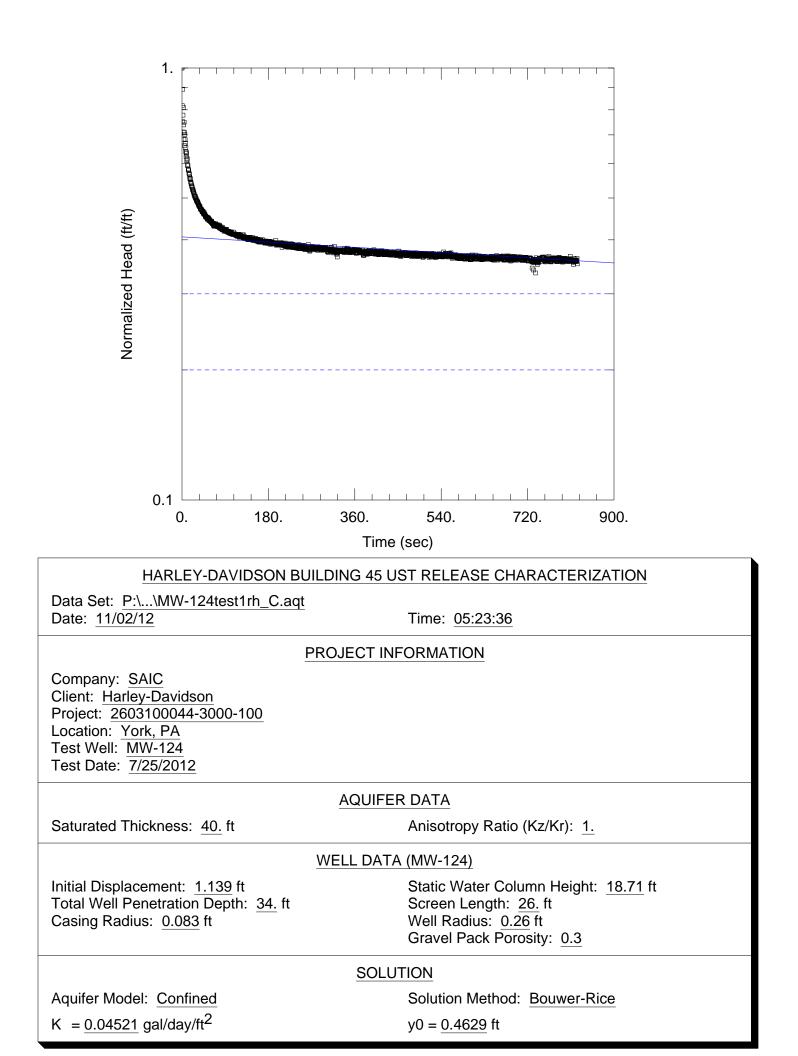

Form 901 3/04 (SW02 2003)

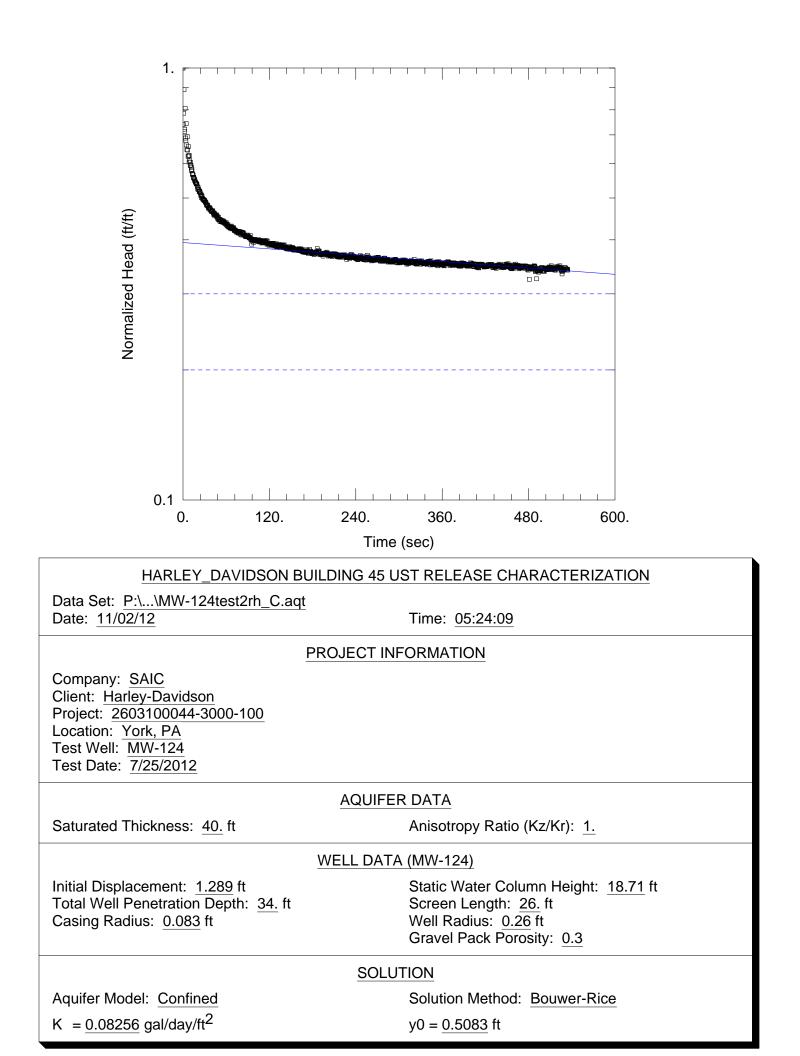

Name (Print or Type)


APPENDIX G


Hydraulic Conductivity Test Plots







APPENDIX H

Fate-and-Transport Modeling Results

B 20 years

ADVECTIVE TR				RSION,1ST	ORDER DECA	Y and RETARDA	TION - W	ITH CALIB	RATION TOC)L			
Project:	Harley-Davi		ompany, Inc.										
Date:	10/23/2012	Prepared by:	EMW										
		Contaminant:	Benzene - 20 Yea	ars						NEW QUICK_DOMENICO.XLS			
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (o	days)		SPREADSHEE	-		
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)		MU		ICAL MODEL		
(MG/L)				day-1	(ft)	(ft)				ECAYING CON			
15	5.00E+01	5.00E+00	1.00E-03	0.00096	30	10		7,300			nenico (1987)		
											nclude Retarda	ition	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			incanca to n			
Cond	Gradient		Density	KOC	Org. Carb.	ation	(=K*i/n*F	R)					
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)				(ft/day)						
2.00E-01	0.05	0.2	1.85	58	1.60E-03	1.8584	0.02	26904864					
Point Conce	entration			_	Centerline F	Plot (linear)		-	C	enterline Plot ((log)		
x(ft)	y(ft)	z(ft)						-			 Г]	
				- 12.00 -		-	Model Output	-				 Model Output 	
1,650	0	0		10.00 -			Output	-				Output	
				8.00 -			Field Data	10.000				Field Data	
	x(ft)	y(ft)	z(ft)				Duiu				L	Duiu	
Conc. At	1650			- 9 6.00 -				ຍ ຍູ່ 1.000					
at	7300	days =		ن 4.00 -				8		×.			
			0.000	-				0.100		•			
			mg/l	- 2.00 -						•	•		
	AREAL	CALCULATION		0.00 -				0.010		r	• •		
	MODEL	DOMAIN			ן 2	200 400		0.010			000	100	
	Length (ft)	300		n `	dist	200 400 cance			0 10	⁰⁰ distance	300	400	
	Width (ft)	100]						
	30	60	90	120	150	180		210	240	270	300		
100	0.000	0.001	0.006	0.011	0.012	0.010		0.008	0.006	0.004	0.002		
50		0.358	0.302	0.204		0.076		0.044	0.025	0.014	0.008		
0	5.279	2.269	1.084	0.544	0.280	0.147		0.078	0.042	0.022	0.012		
-50	0.186	0.358	0.302	0.204	0.127	0.076		0.044	0.025	0.014	0.008		
-100	0.000	0.001	0.006	0.011	0.012	0.010		0.008	0.006	0.004	0.002		
Field Data:	Centerline C	Concentratio	n	11	2.3	0.18							
	Distance fro	m Source		0.1	58	150							
					-								
	1	I	l.		1	1	1			1			

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davisdon Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Benzene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 0.00096 1.00E-03 15 5.00E+01 5.00E+00 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/day) (ft/ft) (R) 2.00E-01 0.05 1.85 58 1.60E-03 1.8584 0.026904864 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 12.00 Model Model Output Output 1.650 0 0 10.00 - Field 10.000 Field Data Data 8.00 x(ft) y(ft) z(ft) conc **20** 1.000 6.00 Conc. At 1650 0 18250 days = at 4.00 0.000 0.100 2.00 mg/l CALCULATION AREAL 0.00 0.010 MODEL DOMAIN 200 distance 0 400 0 100 300 400 distance Length (ft) 300 Width (ft) 100 120 150 180 210 270 300 30 60 90 240 100 0.000 0.001 0.006 0.011 0.012 0.010 0.008 0.006 0.004 0.002 50 0.076 0.026 0.008 0.186 0.358 0.302 0.204 0.127 0.044 0.015 5.279 2.269 1.084 0.544 0.281 0.148 0.079 0.042 0.023 0.012 0 -50 0.186 0.358 0.302 0.204 0.127 0.076 0.044 0.026 0.008 0.015 -100 0.000 0.001 0.006 0.011 0.012 0.010 0.008 0.006 0.004 0.002 **Centerline C Concentration** Field Data: 2.3 11 0.18 **Distance from Source** 0.1 58 150

B 20 years

ADVECTIVE TR	RANSPORT WI	TH THREE DIME	ENSIONAL DISPE	RSION,1ST	ORDER DECA	Y and RETARDA	TION - W	ITH CALIB	RATION TOO	L		
Project:	Harley-Davi	dson Motor C	ompany, Inc.									
Date:	10/23/2012	Prepared by:	EMW									
		Contaminant:	Toluene - 20 Yea	ars						NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax		Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)		NAL II		CAL MODEL	-
(MG/L)				day-1	(ft)	(ft)			-	CAYING CON		
25	5.00E+01	5.00E+00	1.00E-03	0.0247	30	10		7,300			nenico (1987)	
											clude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V					
Cond	Gradient		Density	KOC	Org. Carb.	ation	(=K*i/n*F	२)				
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)					
2.00E-01	0.05	0.2	1.85	130	1.60E-03	2.924	0.0	17099863				
				Fr								
Point Conce	ntration			-	Centerline P	Plot (linear)		-	Ce	enterline Plot (log)	-
x(ft)	y(ft)	z(ft)		-							9,	
~(11)	y(''')	2(11)		20.00		-	Model	100.000	1			 Model
1,650	0	0		-			Output	10.000				Output
1,000	•	•		15.00 -	<u> </u>		- Field	1.000	•			-Field
	x(ft)	y(ft)	z(ft)				Data				L	Data
Conc. At	1650)(1)		9 9 10.00	<u> </u>			မွ ^{0.100}				
at		days =		- ŭ				5 0.010		`		
			0.000	5.00 -				0.001		•	\rightarrow	
			mg/l					0.000	,		_	
	AREAL	CALCULATION		0.00	****	* * * <mark>-</mark>		0.000				
	MODEL	DOMAIN		- () 1	00 200		0.000		• •	• • •	1
	Length (ft)	150			dist	00 200 ance			0 5	⁰ distance	150	200
	Width (ft)	100										
	15	30	45	60	75	90		105	120	135	150	
100	0.000	0.000		0.000				0.000	0.000	0.000	0.000	
50	0.005	0.004	0.001	0.000	0.000			0.000	0.000	0.000	0.000	
0	1.761	0.125	0.010	0.001	0.000	0.000		0.000	0.000	0.000	0.000	
-50	0.005	0.004	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	
-100	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n	18	8.4	0.0001						
	Distance fro			0.1	58							
				0.1		100						

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Toluene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 25 5.00E+01 5.00E+00 0.0247 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 130 1.60E-03 2.924 0.017099863 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 100.000 20.00 - Model Model Output Output 10.000 1.650 0 0 15.00 - Field Field 1.000 Data Data x(ft) y(ft) z(ft) **b** 10.00 0.100 **b** 0.100 0.010 Conc. At 1650 0 18250 days = at 0.001 0.000 5.00 mg/l 0.000 CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 100 distance 0 200 0 50 150 200 distance Length (ft) 150 Width (ft) 100 60 75 90 150 15 30 45 105 120 135 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.005 0.004 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 1.761 0.125 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.005 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.0001 18 8.4 0.1 **Distance from Source** 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Ethylbenzene - 20 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 5 5.00E+01 5.00E+00 0.003 30 10 7,300 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (ft/day) (dec. frac.) (g/cm³⁾ (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 220 1.60E-03 4.256 0.01174812 0.2 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 3.00 - Model Model Output Output 58 0 0 2.50 1.000 - Field Field 2.00 Data Data x(ft) y(ft) z(ft) 0.100 conc Q 1.50 Conc. At 58 0 **5**0.010 7300 days = at 1.00 0.063 0.001 0.50 mg/l CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 100 distance 0 200 0 50 150 200 distance Length (ft) 150 Width (ft) 100 60 75 90 150 15 30 45 105 120 135 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.004 0.017 0.002 0.000 0.000 0.015 0.009 0.004 0.001 0.000 1.534 0.475 0.159 0.055 0.020 0.007 0.003 0.001 0.000 0.000 0 -50 0.004 0.017 0.015 0.009 0.004 0.002 0.001 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 2.6 0.0001 0.96 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Ethylbenzene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 5 5.00E+01 5.00E+00 0.003 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 220 1.60E-03 4.256 0.01174812 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 3.00 - Model Model Output Output 1.650 0 0 2.50 1.000 - Field Field 2.00 Data Data x(ft) y(ft) z(ft) 0.100 conc **0.010** 1.50 Conc. At 1650 0 18250 days = at 1.00 0.000 0.001 0.50 mg/l CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 100 distance 0 200 0 150 200 50 distance Length (ft) 150 Width (ft) 100 60 75 90 105 150 15 30 45 120 135 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.004 0.002 0.000 0.000 0.017 0.015 0.009 0.004 0.001 0.000 1.534 0.475 0.159 0.055 0.020 0.007 0.003 0.001 0.000 0.000 0 -50 0.004 0.017 0.015 0.009 0.004 0.002 0.001 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 2.6 0.0001 0.96 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: MTBE - 20 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 0.8 5.00E+01 5.00E+00 0.0018 30 10 7,300 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/day) (ft/ft) (R) 2.00E-01 0.05 1.85 12 1.60E-03 1.1776 0.042459239 0.2 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 0.70 1.000 - Model Model Output Output 0.60 1.650 0 0 0.100 Field Field 0.50 Data Data x(ft) y(ft) z(ft) conc 0.40 **2**0.010 Conc. At 1650 0 0.30 7300 days = at 0.20 0.000 0.001 0.10 mg/l CALCULATION 0.00 AREAL 0.000 MODEL DOMAIN 200 distance 0 400 0 100 300 400 distance Length (ft) 300 Width (ft) 100 120 150 180 210 300 30 60 90 240 270 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.009 0.017 0.003 0.001 0.000 0.013 0.008 0.005 0.001 0.000 0.263 0.106 0.047 0.022 0.011 0.005 0.003 0.001 0.001 0.000 0 -50 0.009 0.017 0.013 0.008 0.005 0.003 0.001 0.001 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.0001 0.63 0.044 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: MTBE - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 0.8 5.00E+01 5.00E+00 0.0018 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 12 1.60E-03 1.1776 0.042459239 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 0.70 1.000 - Model Model ٠ Output Output ******** 0.60 1.650 0 0 0.100 Field Field 0.50 Data Data x(ft) y(ft) z(ft) conc 0.40 **20** 0.010 Conc. At 1650 0 0.30 18250 days = at 0.20 0.000 0.001 0.10 mg/l **** CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 100 distance 0 200 0 150 200 50 distance Length (ft) 130 Width (ft) 100 52 65 78 91 130 13 26 39 104 117 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.007 0.015 0.007 0.001 0.013 0.016 0.016 0.013 0.011 0.009 0.496 0.302 0.196 0.133 0.092 0.065 0.046 0.033 0.024 0.017 0 -50 0.001 0.007 0.013 0.016 0.016 0.015 0.013 0.011 0.009 0.007 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.0001 0.63 0.044 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Naphthalene - 20 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 0.28 5.00E+01 5.00E+00 1.00E-03 0.0027 30 10 7,300 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 950 1.60E-03 0.003320053 0.2 15.06 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 0.30 1.000 - Model Model Output Output 0.25 1.650 0 0 0.100 Field Field 0.20 Data Data x(ft) y(ft) z(ft) 0.010 conc 0.15 υ Conc. At 1650 0 **ភ្**0.001 7300 days = at 0.10 0.000 0.000 0.05 mg/l CALCULATION 0.00 AREAL 0.000 MODEL DOMAIN 100 distance 0 200 0 150 200 50 distance Length (ft) 150 Width (ft) 100 60 75 90 150 15 30 45 105 120 135 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.28 0.0043 0.16 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: Naphthalene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 0.28 5.00E+01 5.00E+00 1.00E-03 0.0027 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 950 1.60E-03 0.003320053 0.20 15.06 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 1.000 0.30 - Model Model ٠ Output Output 0.25 1.650 0 0 0.100 - Field Field 0.20 Data Data x(ft) y(ft) z(ft) 0.010 conc **0.001** 0.15 Conc. At 1650 0 18250 days = at 0.10 0.000 0.000 0.05 mg/l CALCULATION 0.00 AREAL 0.000 MODEL DOMAIN 100 distance 0 200 0 150 200 50 distance Length (ft) 150 Width (ft) 100 60 75 90 150 15 30 45 105 120 135 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.28 0.0043 0.16 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: 1,2,4-trimethylbenzene - 20 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 1.3 5.00E+01 5.00E+00 0.012 30 10 7,300 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 2200 1.60E-03 33.56 0.001489869 0.2 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 10.000 1.40 - Model Model Output Output 1.20 1.000 1.650 0 0 Field Field 1.00 Data 0.100 Data x(ft) y(ft) z(ft) conc 0.80 **2**0.010 Conc. At 1650 0 0.60 **8**0.001 7300 days = at 0.40 0.000 0.20 0.000 mg/l CALCULATION 0.00 AREAL 0.000 MODEL DOMAIN 100 distance 0 200 0 50 150 200 distance Length (ft) 130 Width (ft) 100 52 65 78 91 130 13 26 39 104 117 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.0034 1.3 1.2 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: 1,2,4-trimethylbenzene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 1.3 5.00E+01 5.00E+00 0.012 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Hydraulic Hydraulic Soil Bulk Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 2200 1.60E-03 33.56 0.001489869 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 10.000 1.40 - Model Model Output Output 1.20 1.000 1.650 0 0 Field Field 1.00 Data 0.100 Data x(ft) y(ft) z(ft) conc 0.80 ပျ **ဗို** ^{0...} 0.001 Conc. At 1650 0 0.60 18250 days = at 0.40 0.000 0.20 0.000 mg/l CALCULATION 0.00 AREAL 0.000 MODEL DOMAIN 100 distance 0 200 0 50 150 200 distance Length (ft) 130 Width (ft) 100 52 65 78 91 130 13 26 39 104 117 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.0034 1.3 1.2 **Distance from Source** 0.1 58 150

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: 1,3,5-trimethylbenzene - 20 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 0.63 5.00E+01 5.00E+00 0.012 30 10 7,300 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 660 1.60E-03 10.768 0.004643388 0.2 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 1.000 0.12 - Model Model ٠ Output Output 1.650 0 0 0.10 0.100 Field Field 0.08 Data Data x(ft) y(ft) z(ft) 0.010 conc **20**.001 0.06 Conc. At 1650 0 7300 days = at 0.04 0.000 0.000 0.02 mg/l CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 50 100 distance 0 150 0 ⁵⁰ distance ¹⁰⁰ 150 Length (ft) 130 Width (ft) 100 52 65 78 91 13 26 39 104 117 130 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.1 0.041 0.001 **Distance from Source** 0 32 63

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Harley-Davidson Motor Company, Inc. Project: Date: 10/23/2012 Prepared by: EMW Contaminant: 1,3,5-trimethylbenzene - 50 Years NEW QUICK_DOMENICO.XLS SPREADSHEET APPLICATION OF SOURCE Az LAMBDA SOURCE SOURCE Time (days) Ax Ay "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) DECAYING CONTAMINANT SPECIES" 1.00E-03 0.63 5.00E+01 5.00E+00 0.012 30 10 18,250 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Cond Gradient Porosity Density KOC Org. Carb. ation (=K*i/n*R) (dec. frac.) (g/cm³⁾ (ft/day) (ft/ft) (R) (ft/day) 2.00E-01 0.05 1.85 660 1.60E-03 10.768 0.004643388 0.20 **Centerline Plot (linear)** Centerline Plot (log) Point Concentration z(ft) x(ft) y(ft) 1.000 0.12 Model Model ٠ Output Output 1.650 0 0 0.10 0.100 - Field Field 0.08 Data Data x(ft) y(ft) z(ft) 0.010 conc **0.001** 0.06 Conc. At 1650 0 18250 days = at 0.04 0.000 0.000 0.02 mg/l CALCULATION AREAL 0.00 0.000 MODEL DOMAIN 50 100 distance 0 150 0 ⁵⁰ distance ¹⁰⁰ 150 Length (ft) 130 Width (ft) 100 52 65 78 91 13 26 39 104 117 130 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 -50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: 0.1 0.041 0.001 **Distance from Source** 0 32 63

APPENDIX I

Soil Gas Sample Point Construction Logs

	JAIC ®		SOIL V	APOR CONSTRUCTIC	(1	Page 1 of 1)
	ormer York Naval Ordnance Plant ng 45 UST Release Characterization	Driller Logged By	,	: SAIC : Matthew J. Logan	Drilling Started Drilling Completed	: 6/21/2012 : 6/21/2012
F	1425 Eden Road, York, PA Project # 2603100044/3000/100	Drilling Me Drilling Dia		: Geoprobe : 3 1/4"	Point Constructed	: 6/21/2012
eet			eet	SGSP-1		
Depth in Feet	DESCRIPTION	GRAPHIC	Depth in Feet	- Well Cover		Construction formation
0	nconsolidated materials consisting of		0-		Well Construction	
- sil	It and clay.		-	- Concrete	Date Compl. Total Depth	: 6/21/2012 : 6.0' BGS
- - 1-			- - 1-		Well Casing Material Diameter From	: Sch 40 PVC : 1" : 0.0'-4.0'
-			-		Well Screen Material Slot Size Diameter	: Sch 40 PVC : 0.010" : 1"
2-			- 2-	Bentonite	From Sand	: 4.0'-6.0'
-			-		Type From Seal	: #1 Morie Sand : 3.3'-6.0'
3-			3-		Type From Well Cover	: Granular Bentonite : 1.0'-3.3'
-			-		Type BGS-below groun	: Flush-mount
			-			
4			4			
-				-Sand		
5			5	1" PVC Screen		
-						
6 EI	ND OF BORING AT 6' BGS.		6-			
6 EI - EI 7 -	ND OF BORING AT 6' BGS.		- 6 - - - 7			

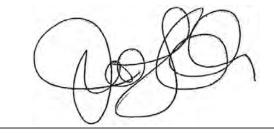
					(F	Page 1 of 1)
Building 45 UST 1425 Ede	Naval Ordnance Plant Release Characterization n Road, York, PA	Driller Logged By Drilling Met	hod	: SAIC : Matthew J. Logan : Geoprobe	Drilling Started Drilling Completed Point Constructed	: 6/21/2012 : 6/21/2012 : 6/21/2012
Project # 26	03100044/3000/100	Drilling Dia	meter	: 3 1/4"		
Depth in Feet	DESCRIPTION	GRAPHIC	Depth in Feet	SGSP-2		Construction formation
0 Unconsolida silt and clay	ated materials consisting of			Well Cover - Concrete - Bentonite 1" PVC Riser - Sand - Sand - 1" PVC Screen	Well Construction Date Compl. Total Depth Well Casing Material Diameter From Well Screen Material Slot Size Diameter From Sand Type From Seal Type From Well Cover Type BGS-below ground	: 6/21/2012 : 6.0' BGS : Sch 40 PVC : 1" : 0.0'-4.0' : Sch 40 PVC : 0.010" : 1" : 4.0'-6.0' : #1 Morie Sand : 3.5'-6.0' : Granular Bentonite : 1.0'-3.5' : Flush-mount d surface.

SAIC.	SOIL	VAPOR CONSTRUCTIC		NT SGSP-3 Page 1 of 1)
Former York Naval Ordnance Plant Building 45 UST Release Characterization 1425 Eden Road, York, PA Project # 2603100044/3000/100	Driller Logged By Drilling Method Drilling Diameter	: SAIC : Matthew J. Logan : Geoprobe : 3 1/4"	Drilling Started Drilling Completed Point Constructed	: 6/21/2012 : 6/21/2012 : 6/21/2012
Topol # 2000 Note +	OHAP C C C C C C C C C C C C C C C C C C C	SGSP-3 Well Cover Concrete Bentonite 1" PVC Riser		Construction formation : 6/21/2012 : 6.0' BGS : Sch 40 PVC : 1" : 0.0'-4.0' : Sch 40 PVC : 0.010" : 1" : 4.0'-6.0' : #1 Morie Sand : 3.5'-6.0' : Granular Bentonite : 1.0'-3.5' : Flush-mount I surface.

APPENDIX J

Soil Gas Sample Analytical Reports

SAIC Energy, Environment & Infrastructure, LLC



ANALYTICAL REPORT

Job Number: 180-13478-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release. Jill L Colussy Project Manager I 8/31/2012 11:24 AM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 08/31/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	3
Report Narrative	3
Sample Summary	4
Method Summary	5
Data Qualifiers	6
Certification Summary	7
Subcontracted Data	8
Shipping and Receiving Documents	209
Client Chain of Custody	210
Sample Receipt Checklist	214

SAMPLE SUMMARY

Client: Science Applications International Corp

Job Number: 180-13478-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
180-13478-1	HD-B45-SGSP-3-01-0	Air	08/15/2012 0920	08/16/2012 1054
180-13478-2	HD-B45-AMBIENT-01-0	Air	08/15/2012 1030	08/16/2012 1054
180-13478-3	HD-B45-SGSP-1-01-0	Air	08/15/2012 1101	08/16/2012 1054
180-13478-4	HD-B45-SGSP-2-01-0	Air	08/15/2012 1229	08/16/2012 1054

METHOD SUMMARY

Client: Science Applications International Corp Job Number: 180-13478-1 Description Lab Location Method Preparation Method Matrix: Air General Sub Contract Method TAL KNX Subcontract Lab References: TAL KNX = TestAmerica Knoxville Method References: Method References:

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Certification Summary

Client: Science Applications International Corp Project/Site: Harley Davidson

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Knoxville	Arkansas DEQ	State Program	6	88-0688
TestAmerica Knoxville	California	State Program	9	2423
TestAmerica Knoxville	Colorado	State Program	8	N/A
TestAmerica Knoxville	Connecticut	State Program	1	PH-0223
TestAmerica Knoxville	Florida	NELAC	4	E87177
TestAmerica Knoxville	Georgia	State Program	4	906
TestAmerica Knoxville	Hawaii	State Program	9	N/A
FestAmerica Knoxville	Indiana	State Program	5	C-TN-02
FestAmerica Knoxville	Iowa	State Program	7	375
TestAmerica Knoxville	Kansas	NELAC	7	E-10349
FestAmerica Knoxville	Kentucky	State Program	4	90101
TestAmerica Knoxville	L-A-B	DoD ELAP		L2311
FestAmerica Knoxville	Louisiana	NELAC	6	83979
TestAmerica Knoxville	Louisiana	NELAC	6	LA110001
FestAmerica Knoxville	Maryland	State Program	3	277
FestAmerica Knoxville	Michigan	State Program	5	9933
FestAmerica Knoxville	Nevada	State Program	9	TN00009
estAmerica Knoxville	New Jersey	NELAC	2	TN001
estAmerica Knoxville	New York	NELAC	2	10781
estAmerica Knoxville	North Carolina DENR	State Program	4	64
estAmerica Knoxville	North Carolina DHHS	State Program	4	21705
estAmerica Knoxville	Ohio VAP	State Program	5	CL0059
estAmerica Knoxville	Oklahoma	State Program	6	9415
FestAmerica Knoxville	Pennsylvania	NELAC	3	68-00576
FestAmerica Knoxville	South Carolina	State Program	4	84001
FestAmerica Knoxville	Tennessee	State Program	4	2014
FestAmerica Knoxville	Texas	NELAC	6	T104704380-TX
FestAmerica Knoxville	USDA	Federal		P330-11-00035
FestAmerica Knoxville	Utah	NELAC	8	QUAN3
estAmerica Knoxville	Virginia	NELAC	3	165
TestAmerica Knoxville	Virginia	State Program	3	165
TestAmerica Knoxville	Washington	State Program	10	C593
TestAmerica Knoxville	West Virginia	State Program	3	9955C
TestAmerica Knoxville	West Virginia DEP	State Program	3	345
TestAmerica Knoxville	Wisconsin	State Program	5	998044300

Accreditation may not be offered or required for all methods and analytes reported in this package Please contact your project manager for the laboratory's current list of certified methods and analytes.

Subcontract Data

H2H170401 Analytical Report	1
Sample Receipt Documentation	19
Volatiles Raw Sample Data Standards Data Initial Calibration J052412I.pdf Continuing Calibration j081712.pdf. Raw QC Data Miscellaneous Data	23 24 64 159 175 191
Sample Receipt Documentation	196
Total Number of Pages	199

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 180-13478-1 Harley Davidson (PADEP) Lot #: H2H170401

Jill Colussy

TestAmerica Pittsburgh 301 Alpha Drive Pittsburgh, PA 15238

TESTAMERICA LABORATORIES, INC.

Ryan Henry

Ryan Henry Project Manager

August 27, 2012

ANALYTICAL METHODS SUMMARY

H2H170401

PARAMETI	SR	ANALYTICAL METHOD	
Volatile	e Organics by TO15	EPA-2 TO-15	
Reference	ces:		
EPA-2	"Compendium of Methods for t Organic Compounds in Ambient January 1999.	the Determination of Toxic Air", EPA-625/R-96/010b,	

SAMPLE SUMMARY

H2H170401

WO # 1	SAMPLE;	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MV6WF	001	HD-B45-SGSP-3-01-0	08/15/12	10:20
MV6WG	002	HD-B45-AMBIENT-01-0	08/15/12	10:30
MV6WH	003	HD-B45-SGSP-1-01-0	08/15/12	11:01
MV6WJ	004	HD-B45-SGSP-2-01-0	08/15/12	12:29

NOTE (S) :

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

3

PROJECT NARRATIVE H2H170401

The results reported herein are applicable to the samples submitted for analysis only. If you have any questions about this report, please call (865) 291-3000 to speak with the TestAmerica project manager listed on the cover page.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

There were no problems with the condition of the samples received.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria. Even though the calibration verification analyzed on 8/17/12 exhibited a % difference of > 30% for napthalene, the results were within the LCS acceptance limits.

CERTIFICATION SUMMARY

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Knoxville	ACLASS	DoD ELAP		ADE-1434
TestAmerica Knoxville	Arkansas	State Program	6	88-0688
TestAmerica Knoxville	California	State Program	9	2423
TestAmerica Knoxville	Colorado	State Program	8	N/A
TestAmerica Knoxville	Connecticut	State Program	1	PH-0223
TestAmerica Knoxville	Florida	NELAC	4	E87177
TestAmerica Knoxville	Georgia	State Program	4	906
TestAmerica Knoxville	Hawaii	State Program	9	N/A
TestAmerica Knoxville	Indiana	State Program	5	C-TN-02
TestAmerica Knoxville	Iowa	State Program	7	375
TestAmerica Knoxville	Kansas	NELAC	7	E-10349
TestAmerica Knoxville	Kentucky	State Program	4	90101
TestAmerica Knoxville	Louisiana	NELAC	6	LA110001
TestAmerica Knoxville	Louisiana	NELAC	6	83979
TestAmerica Knoxville	Maryland	State Program	3	277
TestAmerica Knoxville	Michigan	State Program	5	9933
TestAmerica Knoxville	Minnesota	NELAC	5	047-999-429
TestAmerica Knoxville	Nevada	State Program	9	TN00009
TestAmerica Knoxville	New Jersey	NELAC	2	TN001
TestAmerica Knoxville	New York	NELAC	2	10781
TestAmerica Knoxville	North Carolina	North Carolina DENR	4	64
TestAmerica Knoxville	North Carolina	North Carolina PHL	4	21705
TestAmerica Knoxville	Ohio	OVAP	5	CL0059
TestAmerica Knoxville	Oklahoma	State Program	6	9415
TestAmerica Knoxville	Pennsylvania	NELAC	3	68-00576
TestAmerica Knoxville	South Carolina	State Program	4	84001
TestAmerica Knoxville	Tennessee	State Program	4	2014
TestAmerica Knoxville	Texas	NELAC	6	T104704380-TX
TestAmerica Knoxville	USDA	USDA		P330-11-00035
TestAmerica Knoxville	Utah	NELAC	8	QUAN3
TestAmerica Knoxville	Virginia	State Program	3	165
TestAmerica Knoxville	Washington	State Program	10	C593
TestAmerica Knoxville	West Virginia	West Virginia DEP	3	345
TestAmerica Knoxville	West Virginia	West Virginia DHHR (DW)	3	9955C
TestAmerica Knoxville	Wisconsin	State Program	5	998044300

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Data Summary

Client Sample ID: HD-B45-SGSP-3-01-0

GC/MS Volatiles

Lot-Sample #	H2H170401 - 001	Work Order #	MV6WF1AD	Matrix:	AIR	
Date Sampled:	08/15/2012	Date Received:	08/16/2012			
Prep Date:	08/17/2012	Analysis Time:	08/17/2012			
Prep Batch #:	2233050	Analysis Time:	21:11			1.0
Dilution Factor.:	10	Method:	TO-15			

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
m-Xylene & p-Xylene	ND	0.80	0.50	ND	3.5	2.2
1,3,5-Trimethylbenzene	ND	0.80	0.26	ND	3.9	1.3
Ethylbenzene	ND	0.80	0.27	ND	3.5	1.2
Cumene	ND	1.6	0.24	ND	7.9	1.2
Benzene .	ND	0.80	0.23	ND	2.6	0.73
o-Xylene	ND	0.80	0.24	ND	3.5	1.0
1,2,4-Trimethylbenzene	ND	0.80	0.25	ND	3.9	1.2
Naphthalene	ND	2.0	0.36	ND	10	1.9
Methyl tert-butyl ether	ND	4.0	0.68	ND	14	2.5
Toluene	0.26 J	0.80	0.21	0.97 J	3.0	0.79

SURROGATE		
4-Bromofluorobenzene		

PERCENT RECOVERY

110

LABORATORY CONTROL LIMITS (%) 60 - 140

Qualifiers

J Estimated result. Result is less than RL.

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: HD-B45-AMBIENT-01-0

GC/MS Volatiles

Lot-Sample # H2	2H170401 - 002		Work Order #	MV6WG1AD	Mat	rix: AIR	
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	08/15/2012 08/17/2012 2233050 1		Date Received: Analysis Time: Analysis Time: Method	08/16/2012 08/17/2012 22:04 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
Toluene		0.17	0.080	0.021	0.63	0.30	0.079
Methyl tert-butyl ether		ND	0.40	0.068	ND	1.4	0.25
1,2,4-Trimethylbenzene		0.076 J	0.080	0.025	0.37 J	0.39	0.12
Naphthalene		0.050 J	0.20	0.036	0.26 J	1.0	0.19
o-Xylene		0.062 J	0.080	0.024	0.27 J	0.35	0.10
Cumene		ND	0.16	0.024	ND	0.79	0.12
Benzene		0.087	0.080	0.023	0.28	0.26	0.073
Ethylbenzene		0.033 J	0.080	0.027	0.14 J	0.35	0.12
1,3,5-Trimethylbenzene		ND	0.080	0.026	ND	0.39	0.13
m-Xylene & p-Xylene		0.16	0.080	0.050	0.69	0.35	0.22

SURROGATE	
	 _

4-Bromofluorobenzene

PERCENT RECOVERY

110

LABORATORY CONTROL LIMITS (%)

60 - 140

Oualifiers

J Estimated result. Result is less than RL.

 $\label{eq:Result} Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)$

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: HD-B45-SGSP-1-01-0

GC/MS Volatiles

Lot-Sample # H	2H170401 - 003		Work Order #	MV6WH1AD	Mat	rix: AIR	
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	08/15/2012 08/17/2012 2233050 10		Date Received: Analysis Time: Analysis Time: Method	08/16/2012 08/17/2012 22:56 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v)	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
m-Xylene & p-Xylene		8.6	0.80	0.50	37	3.5	2.2
1,3,5-Trimethylbenzene		1.6	0.80	0.26	7.9	3.9	1.3
Ethylbenzene		1.7	0.80	0.27	7.5	3.5	1.2
Cumene		0.32 J	1.6	0.24	1.6 J	7.9	1.2
Benzene		0.24 J	0.80	0.23	0.76 J	2.6	0.73
o-Xylene		3.8	0.80	0.24	17	3.5	1.0
Naphthalene		1.4 J	2.0	0.36	7.3 J	10	1.9
1,2,4-Trimethylbenzene		7.6	0.80	0.25	37	3.9	1.2
Methyl tert-butyl ether		ND	4.0	0.68	ND	14	2.5
Toluene		3.3	0.80	0.21	13	3.0	0.79

SURROGATE	
4-Bromofluorobenzene	

PERCENT RECOVERY 115 LABORATORY CONTROL LIMITS (%) 60 - 140

Qualifiers

5

J Estimated result. Result is less than RL.

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: HD-B45-SGSP-2-01-0

GC/MS Volatiles

Lot-Sample # H2H17040	- 004 Work Order #	MV6WJ1AD	Matrix:	AIR
Date Sampled: 08/15	2012 Date Received:	08/16/2012		
Prep Date: 08/17	2012 Analysis Time:	08/17/2012		
Prep Batch #: 22330	50 Analysis Time:	23:50		
Dilution Factor.: 10	Method:	TO-15		

PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
Toluene	0.57 J	0.80	0.21	2.1 J	3.0	0.79
Methyl tert-butyl ether	ND	4.0	0.68	ND	14	2.5
1,2,4-Trimethylbenzene	ND	0.80	0.25	ND	3.9	1.2
Naphthalene ·	ND	2.0	0.36	ND	10	1.9
o-Xylene	ND	0.80	0.24	ND	3.5	1.0
Benzene	0.26 J	0.80	0.23	0.84 J	2.6	0.73
Cumene	ND	1.6	0.24	ND	7.9	1.2
Ethylbenzene	ND	0.80	0.27	ND	3.5	1.2
1,3,5-Trimethylbenzene	ND	0.80	0.26	ND	3.9	1.3
m-Xylene & p-Xylene	ND	0.80	0.50	ND	3.5	2.2

SURROGATE	
-----------	--

4-Bromofluorobenzene

RECOVERY

PERCENT

LABORATORY CONTROL LIMITS (%) 60 - 140

Oualifiers

J Estimated result. Result is less than RL.

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H2H200000 - 050B Work Order # MV7M41AA Matrix: AIR Date Received ..: 08/16/2012 08/15/2012 Prep Date: 08/17/2012 Analysis Time: 08/17/2012 Prep Batch #....: Analysis Time: 14:41 2233050 **Dilution Factor.:** 1 Method.....: **TO-15** RESULTS REPORTING RESULTS MDL REPORTING MDL (ppb(v/v)) LIMIT (ug/m3) PARAMETER LIMIT (ppb(v/v)) (ppb(v/v)) (ug/m3) (ug/m3) m-Xylene & p-Xylene ND ND 0.080 0.050 0.35 0.22 1,3,5-Trimethylbenzene ND 0.080 0.026 ND 0.39 0.13 Ethylbenzene ND 0.080 0.027 ND 0.35 0.12 Benzene ND 0.080 0.023 ND 0.26 0.073 Cumene ND 0.16 0.024 ND 0.79 0.12 o-Xylene ND 0.080 0.024 ND 0.35 0.10 Naphthalene ND 0.20 0.036 ND 1.0 0.19 1,2,4-Trimethylbenzene ND 0.080 0.025 ND 0.39 0.12 Methyl tert-butyl ether ND 0.40 0.068 ND 1.4 0.25 Toluene ND 0.080 0.021 ND 0.30 0.079

	PERCENT
SURROGATE	RECOVERY
4-Bromofluorobenzene	103

LABORATORY CONTROL LIMITS (%) 60 - 140

 $\label{eq:Result} Result\,(ug/m3) = Result\,(ppb(v/v))[unrounded] \ ^{*} (Molecular \ Weight/24.45)$

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample #	H2H200000 - 050C		Work Order #	MV7M41AC		Matrix:	AIR
Prep Date: Prep Batch #: Dilution Factor.:	08/15/2012 08/17/2012 2233050 1		Date Received: Analysis Time: Analysis Time: Method	08/16/2012 08/17/2012 12:25 TO-15			
PARAMETER		SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Toluene		5.00	4.50	18.8	16.9	90	70 - 130
Methyl tert-butyl ether	r	5.00	5.49	18.0	19.8	110	60 - 140
Naphthalene		5.00	3.25	26.2	17.1	65	40 - 140
1,2,4-Trimethylbenzer	ne	5.00	4.62	24.6	22.7	92	70 - 130
o-Xylene		5.00	4.78	21.7	20.7 ·	96	70 - 130
Benzene		5.00	4.54	16.0	14.5	91	70 - 130
Cumene		5.00	4.63	24.6	22.8	93	70 - 130
Ethylbenzene		5.00	4.75	21.7	20.6	95	70 - 130
1,3,5-Trimethylbenzer	ne	5.00	4.42	24.6	21.7	88	70 - 130
m-Xylene & p-Xylene		10.0	9.76	43.4	42.4	98	70 - 130

SURROGATE

4-Bromofluorobenzene

PERCENT RECOVERY 112 LABORATORY CONTROL LIMITS (%) 60 - 140

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

 $\label{eq:MDL model} {\rm MDL \ (ug/m3) = MDL \ (ppb(v/v))[unrounded] * (Molecular \ Weight/24.45)}$

Lab Name: TestAmerica Laboratories, Inc.

Client: TestAmerica Pittsburgh

Lab Code: TALKNX SDG No:

Lot #: H2H170401

Extraction: XXS887M01

	CLIENT ID.	SRG01	TOT OUT
			======
01	HD-B45-SGSP-3-01-0	110	00
)2	HD-B45-AMBIENT-01-0	110	00
)3	HD-B45-SGSP-1-01-0	115	00
)4	HD-B45-SGSP-2-01-0	107	00
)5	METHOD BLK. MV7M41AA	103	00
)6	LCS MV7M41AC	112	00

SURROGATES SRG01 = 4-Bromofluorobenzene QC LIMITS (60-140)

Column to be used to flag recovery values
* Values outside of required QC Limits
D System monitoring Compound diluted out

FORM II

Lab Name: TestAmerica Laboratories, Inc. Client: TestAmerica Pittsburgh

Lab Code: TALKNX

SDG No:

Lot #: H2H200000

WO #: MV7M41AC BATCH: 2233050

COMPOUND	SPIKE ADDED (ppb(v)	SAMPLE CONCENT. (ppb(v)	% REC	QC LIMITS REC	QUAL
Methyl tert-butyl ether	5.00	5.49	110	60- 140	
Benzene	5.00	4.54	91	70- 130	
Toluene	5.00	4.50	90	70- 130	
Ethylbenzene	5.00	4.75	95	70- 130	
m-Xylene & p-Xylene	10.0	9.76	98	70- 130	
o-Xylene	5.00	4.78	96	70- 130	
Cumene	5.00	4.63	93	70- 130	
1,3,5-Trimethylbenzene	5.00	4.42	88	70- 130	
1,2,4-Trimethylbenzene	5.00	4.62	92	70- 130	
Naphthalene	5.00	3.25	65	40- 140	

NOTES (S) :

* Values outside of QC limits

Spike Recovery: ____0 out of ____0 outside limits

COMMENTS:

Sample Receipt Documentation

TAL Knoxville 5815 Middlebrook Pike	Canis	Canister Sa	mples	s Chai	n of C	חרורובו ולושלו http:// מרורובו http:// מרורובו http:// mples Chain of Custody Record	Identified	q		P	Ő	sstAr	J.	Č	G		Ø
phone 865-291-3000 fax 865-584-4315	TestAmerica	TestAmerica assumes no		respect to I	he collection	liability with respect to the collection and shipment of these samples.	of these sampl	es.		F	E LEA	THE LEADER IN ENVIRONMENTAL TESTING	N ENVI	ENVIRONMENTAL T	NENTA S	AL TES	SNIT
Client Contact Information	Project Manager:	nager: R	adrey	Myess		Sampled By: Matthew J	Matthe	1 mg	Lappon	9	-	of		cocs			
Company: SAIC	Phone: 71	15	1439														
Address: 6310 Allentation Dial City/State/Zip Henrission PA 17113 Phone: 717 901-8100	Site Contact: TAL Contact:	ct: Corr	Mend I	HINNEY								(noilcea			-		(uoiloes
of Name: 15 Circles										-		səte		-		_	səto
HU DIAS HO USI	rotactes (2 star	Analysis Turna Standard (Snacifu)	s Turnaround Time	nd Time					-			ou ui /	には		-		ou ui /
Po# 18009897.0		Rush (Specify)	ify)						-		-		ð		-	_	lioeds
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	70-1£	A41-OT	EPA 26C	9461-0 MTSA	Ofher (Please	dVT 9lqms2	Indoor Air	Ambient Air ssð lio2	Landfill Gas	other (Please
HD. B45.5659.3.01.0	8.6.13	0690	0001	38	9	13	11153	×		-				-	11	1	
HO. B45 - Ambrest - OI.O		0000	0201	R	F	99	0063	×		-				1	×		
HD-B45-SGSP-1- OL-O		1001	1011	8	1	5	6615	7		-				-	×		
HO.D. 45.5658. 3. O. O	->	6211	1939	900	11.5	126	10411	×					和許	-	×		
	_															_	
										-			49.000 (19.000 (19.000)		_	_	
Sampled by :				Temperature	Temperature (Fahrenheit)			100%	K	Reich	D. C.	- pra	4	tet	0		
	Ctat	Interior		Ambient				trus	2	usta	sof	Sea	1 my	" A			_
	Ston							4		0		39	M	8/14	12	10	-
	depo			Pressure (inches of Ha)	ches of Hu)			1 20%		red X #		90005166	513	se	211	9	
		Interior		Ambient	(Ruissonia)								1.				-
	Start							4	CBWS		2 P	Flow	B	~		Ē	
Special Instructions/QC Requirements & Comments:	ents: Analyze for	: you	benzene	ne, et	nyl ben	penzere, Cu	I I J	raphil	12	24	7	mere, toluene, total	P	ofal	14	Enes,	1 vi
			1.24-1MV	JANS,	1.00-	1210, 17106	IDE.										
Canisters Shipped by:	Date/Time:				Canisters F	Canisters Received by:					-						1
Samples Relinquished by: Muthol Har	Date/Time: 8-15-12	8-15-19	1 (330	0	Received by:	by: Fed.	Ex				_						
Relinquished by:	Date/Time:		6		Received by	Alle	1 Ju	1º		30							
Lab Use Only Shipper Name:				Opened		Condition:		産業				「ない」の					1
)7

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Lot Number: <u>Hallnby</u>]

s match COC? s match COC? within limits? (> freezing ST: 10°C) ST: 10°C) th correct chemical th correct chemical the correct chemical th correct che	Review Items	Yes No	NA	If No, what was the problem?	Comments/Actions Taken
Do sample container labels match COC? (Ds, Dates, Times) is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples needed on the COC received? Were all of the samples received intact? Were all of the samples received intact? Were samples received without headspace? Were Supples received without headspace? Were Supples received within holding time? Tor 1613B water samples is pH<9? Are the sinpping containers is pH<9? Suppresenters listed on the COC? Mast for each sample? For rad samples ontainers intact? Mast fue samples need within holding time? For 1613B water samples is pH<9? Mast for samples ontainers listed on the COC? Mast for each sample? Mast for each sample? More #: MoSS PM Instructions: MA			+		
(IDs, Dates, Times) Is the cooler temperature within limits? (> freezing temp. of water to 6°C, VOST: 10°C) Were samples received with correct chemical meservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were VOA samples received without headspace? Were samples received without headspace? Were samples received within holding time? To the samples received within holding time? To the samples received within holding time? To the samples received within holding time? To a samples received of the sample? To a sample solution noted? To a sample solution noted? To a sample solution noted? To a sample solution noted? To a sample identified on the COC? Mote #: Mos Samples noted? To a sample solution noted? To a sample solution noted? To a sample solution noted? To a sample identified on the COC? Mote #: Mos Sample solutions: MA	Do sample container labels match COC?		L	□ 1a Do not match COC	
Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples containers received intact? Were samples received without headspace? Were Samples received in appropriate containers? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Nere samples received within holding time? Yer the shipping containers intact? Nas COC relinquished? (Signed/Dated/Timed) Are the shipping containers intact? Was the samples received on the COC? State client and project name# identified? Is the date/time of samples is pH<9?	(The Dates Times)	-	_	11 In Incomplete information	
Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were cutody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the samples received without headspace? Were samples received without headspace? Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Tor 1613B water samples is pH-9? For 1613B water samples is pH-9? Are the shipping containers listed for each sample? Is the date/time of samples noted? Is the client and project name/# identified? Was the samples noted? Is the client and project name/# identified? Was the sample solue collection noted? Is the client and project name/# identified? Was the sample identified on the COC? More #:	(court court)		-		
Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received intact? Were samples received in appropriate containers? Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Pier rad samples, was sample activity info, provided? Yer the shipping containers intact? Are the shipping containers intact? Yer the shipping containers intact? Was COC relinquished? (Signed/Dated/Tated) Are tests/parameters listed for each sample? Is the client and project name/# identified? Is the client and project name/# identifi			_	□ Ic Marking smeared	
Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were samples received with correct chemical preservative (excluding Encore)? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples received intact? Were VOA samples received intact? Were Samples received without headspace? Were samples received within holding time? Were Samples received within holding time? P Nere samples received within holding time? P Nere samples received within holding time? P Nere samples received signed/Dated/Timed) Mere samples received in the provided? Were samples received within holding time? P Nere sample		i	-	□ 1d Label torn	
Is the cooler temperature within limits? (> freezing temp. of water to 6°C, VOST: 10°C) Is the cooler temperature within limits? (> freezing temp. of water to 6°C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were vOA samples received intact? Were samples received intact? Were samples received intact? Were samples received intact? Were samples received within holding time? Were samples received intact? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples received intact? Were samples received within holding time? Were samples received intact? Were samples received within holding time? Were samples received intact? Were samples received within holding time? Were samples received intact? Were samples received within holding time? Were samples received water samples? Were samples received within holding time? Were samples intact? Were samples on the COC Were samples? Were samples on the coch sample? Were samples? Were samples on the COC Were samples? <td></td> <td></td> <td>-</td> <td>1 1 a No Ishel</td> <td></td>			-	1 1 a No Ishel	
Is the cooler temperature within limits? (> freezing temp. of water to 6°C, VOST: 10°C) Termp. of water to 6°C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intract on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples containers received intact? Were VOA samples received without headspace? Were Samples received within holding time? Test on coher and/or Were Samples received within holding time? Ter 1613B water samples is pH ??</td Yer the shipping containers intact? Ter 1613B water samples is pH ??</td Ter 1613B water samples is pH ??</td Ter 1613B water samples intact? Wate the samples of the sample? Ter 1613B water samples intact? Water samples intact? Water samples of Signed/Dated/Timed) Are the shipping containers intact? Water samples of the sample? Ter 1613B water samples intact? Water samples intact? Water samples of Signed/Dated/Timed) Are the shipping containers intact? Water samples inteted? Water samples of		1		1 f COC not received	
Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received intact? Were samples received without headspace? Were samples received without headspace? Were samples received within holding time? Were samples received within holding time? Tor 1613B water samples is pH<9? Are the shipping containers is pH<9? Is the client and project name## identified? Is the date/time of samples noted? Weat the samples onted? Is the client and project name# identified? Wate the samples noted? Weat the samples noted? Weat the samples noted? Weat the samples onted? Weat the samples onted? Weat the samples noted? Weat the sample? Weat the samples noted? Weat the sam		2		1 of the other:	
temp. of water to 6 °C, VOST: 10°C) temp. of water to 6 °C, VOST: 10°C) Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples containers received intact? Were VOA samples received without headspace? Were VOA samples received without headspace? Were samples received within holding time? Piol you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Were samples received within holding time? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Mas COC relinquished? (Signed/Dated/Timed) is the client and project name# identfied? Is the date/time of sample collection noted? Nues the sampler identified on the COC? Was the sampler identified on the COC? Was the sampler identified on the COC? Nues the sampler identified on the COC? Nues the sampler identified on the COC?	Is the cooler temnerature within limite? (> freezino		-	□ 3ª Temn Rlank =	
were samples received with correct chemical preservative (excluding Encore)? Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples received without headspace? Were vOA samples received without headspace? Were samples received without headspace? Were samples received within holding time? For rad samples received within holding time? Were samples received within holding time? For rad samples, was sample activity info, provided? Ware samples received within holding time? Are the shipping containers intac?? Mast COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Mast COC relinquished? (Signed/Dated/Timed) Is the client and project name# identified? Mast the samples noted? Is the client and project name# identified? Must He samples indect? Must ROC? Must the samples indect? Mus	the could without a 1000 million of another to Control of the could be a series of the could be series of the could be a series of the could be a		-		
Were samples received with correct chemical preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples received intact? Were samples received without headspace? Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Point and samples received within holding time? For rad samples received within holding time? Was COC relinquished? (Signed/Dated/Timed) Mas for fate samples noted? Is the date/time of sample collection noted? Is the date/time of sample of collection noted? Is the client and project name# identified? Was the sampler identified on the COC?	temp. or water to o C, voor. To C)	1	_		
Were samples received with correct chemical Were samples received with correct chemical Preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples received intact? Were all of the samples received without headspace? Were samples received in appropriate containers? Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Terr ad samples, was sample activity info, provided? Were samples was sample activity info, provided? Ter the shipping containers intact? Mere the samples is pH<9?		2	-	2c Cooling initiated for recently collected samples ice present	
preservative (excluding Encore)? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples listed on the COC received? Were all of the samples received intact? Were vOA samples received without headspace? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Tor rad samples is pH<9?	Were samples received with correct chemical	-	-	□ 3a Sample preservative =	
Were custody seals present/intact on cooler and/or containers? Were custody seals present/intact on cooler and/or containers? Were all of the samples listed on the COC received? Were all of the samples received without headspace? Were vOA samples received without headspace? Were samples received in appropriate containers? Were samples received within holding time? Vere volume Were samples received within the sample within the volume Vere volume Were samples received within the volume Vere volume Wase COC relinquished? (Signed/Dated/Timed) Vere volume	preservative (excluding Encore)?	-	נ		
containers? Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were VOA samples received without headspace? Were Samples received without headspace? Were samples received within holding time? Were samples received within holding time? Net a samples received within holding time? For 1613B water sample activity info. provided? For 1613B water samples is pH<9? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Is the the samples noted? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Was the sampler identified on the COC? Was the sampler identified on the COC?	Were custody seals present/intact on cooler and/or		_	□ 4a Not present	
Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were all of the sample containers received intact? Were VOA samples received without headspace? Were VOA samples received in appropriate containers? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples received within holding time? Were samples is pH<9?	containers?	-	_	□ 4b Not intact	
Were all of the samples listed on the COC received? Were all of the sample containers received intact? Were VOA samples received without headspace? Were VOA samples received in appropriate containers? Did you check for residual chlorine, if necessary? Were samples received within holding time? For rad samples, was sample activity info. provided? For rad samples, was sample activity info. provided? For 1613B water samples is pH<9?		7		□ 4c Other:	
Were all of the sample containers received intact? Were VOA samples received without headspace? Were VOA samples received without headspace? Were Samples received in appropriate containers? Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? For rad samples received within holding time? • Were samples received within holding time? • For rad samples, was sample activity info. provided? • For 1613B water samples is pH<9?			_	□ 5a Samples received-not on COC	
Were all of the sample containers received intact? Volue containers? Were VOA samples received in appropriate containers? Volue containers? Were samples received in appropriate containers? Volue containers? Were samples received within holding time? Volue containers? Were samples received within holding time? Volue containers? Were samples received within holding time? Volue containers? Nater samples received samples is pH<9?		7	-	□ 5b Samples not received-on COC	
Were VOA samples received without headspace? Were samples received in appropriate containers? Were samples received in appropriate containers? Were samples received within holding time? Nere samples received within holding time? Provided? Nate the samples was sample activity info. provided? Provided? Nate the shipping containers intact? Provided? Nas COC relinquished? (Signed/Dated/Timed) Provided? Nas COC relinquished? (Signed/Dated/Timed) Provided? Is the date/time of samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Proved? Nus the sampler identified on the COC? Prove Note #: Prove? Puote #: Prove?	Were all of the sample containers received intact?	1		□ 6a Leaking	
Were VOA samples received without headspace? Were samples received in appropriate containers? Were samples received in appropriate containers? Were samples received within holding time? Did you check for residual chlorine, if necessary? Vere samples received within holding time? Were samples received within holding time? Vere samples received within holding time? Nere samples received within holding time? Vere samples is pH<9?		2		□ 6b Broken	
Were samples received in appropriate containers? Did you check for residual chlorine, if necessary? Were samples received within holding time? For rad samples received within holding time? For 1613B water samples is pH<9?	Were VOA samples received without headspace?	-	-		
Did you check for residual chlorine, if necessary? Did you check for residual chlorine, if necessary? Were samples received within holding time? For rad samples received within holding time? For 1613B water sample activity info. provided? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Nase COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Wase the sample releating on the COC? Wase the sampler identified on the COC? Mathematical client and project name/# identified?	Were samples received in appropriate containers?	7	_	□ 8a Improper container	
Were samples received within holding time? For rad samples received within holding time? For rad samples, was sample activity info. provided? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Nate the sampler identified on the COC?	Did you check for residual chlorine, if necessary?	-	_	☐ □ 9a Could not be determined due	
Were samples received within holding time? V For rad samples, was sample activity info. provided? V For 1613B water samples is pH<9?		1	>	to matrix interference	
For rad samples, was sample activity info. provided? For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of samples noted? Is the client and project name/# identified? Was the sampler identified on the COC? Nas the sampler identified on the COC? Note #:		7		□ 10a Holding time expired	
For 1613B water samples is pH<9? Are the shipping containers intact? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Nate the sampler identified on the COC? Nate the sampler identified on the COC?			2	✓ □ Incomplete information	
Are the shipping containers intact? Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #:		-	-	1	
Are the shipping containers intact? Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 90055 PM Instructions: NA			2	-	4.0
Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #:		1	-	□ 13a Leaking	
Was COC relinquished? (Signed/Dated/Timed) Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 906 Note #: 906		>	_	□ 13b Other:	
Are tests/parameters listed for each sample? Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 9000SS PM Instructions: NA		1	_	□ 14a Not relinquished	
Is the matrix of the samples noted? Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 9000SS PM Instructions: NA		1		□ 15a Incomplete information	
Is the date/time of sample collection noted? Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 90055 PM Instructions: NA		7	_	□ 15a Incomplete information	
Is the client and project name/# identified? Was the sampler identified on the COC? Note #: 9005 PM Instructions: NA		1	-	□ 15a Incomplete information	
Was the sampler identified on the COC? Variable Sampler identified on the COC?		1	_	□ 15a Incomplete information	
PM Instructions: NA	- C -	1	-	□ 19a Other	
and all t	90655 PM Instructions:	0			
1 111 11				, , ,	
Sample Receiving Associate: Warden and Date: 6/1/12	C.	1		Date: 6/16/12	OA026R23.doc. 022812

Test America - Knoxville Air Canister Dilution Log	Lot Number: <u>H2H170401</u>
--	------------------------------

			Initial Can Pressure	e							Su	Subsequent Dilutions	Dilution				
Адаlyst/Date	Tedlar Bag Time	Pbarr (in)	Sample ID	Can #	Pres. Adj. upon Initial receipt Pres. (- tin or in or + * psig) psig)		Analyst/Date	l / Pbarr S (in)	Initial Initial Pres.	Final Pres. Pf (psig)	First InCan Final Pres. Pf (psig)	Second In-can Final Pres. Pf (psig)	Third InCan Final Pres. Pf (psig)	Serial Dilution Can #	(mL)	Final Pres. Pf (psig)	Comments
Yan Iz	1.247	MA-28.81	MV6WF	11152 - 6.0	0.9-	x		1									10016
	-		MV 6WG	0063 /	16.5	1											
			MV6WH	6615 / 12.74 0.8	41.7	8.04											_
~	+	->	MV6WJ	11407 - la.3 +2.4	-10.3	42.4											¥

MS038 Revision 8

Shipping and Receiving Documents

	07-Aug-12	07-Aug-12 14-Aug-12 FEDEX Y Seals Yes No	UMBER COMMENTS 200ml; benzene, ethylbenzene, cumene, MTBE, naphthalene, toluene, 1,2,4-TMB and 1,3,5-TMB 1,3,5-TMB and 1,3,5-TMB and 1,3,5-TMB
Kei: CrN ORDER 12/0480 Buile: 1040g12 SHIPPINU: 21.56 Dep: 140320 Ligt: 31.25 LBS SPECIAL: 2.16 Dep: 140320 Ligt: 31.25 LBS SPECIAL: 2.16 Dep: 140320 Ligt: 31.25 LBS SPECIAL: 2.16 Dep: 140320 Luc U.UU DIAL: 23.72 Siss "20AY" TOTAL: 23.72 DIAY"	Test America BOTTLE ORDER	Order Number 12038 Company Name Date Entered 07-Aug Matthew J. Logan Quote Number TA P Arrive By 14-Aug Matthew J. Logan Quote Number TA P Arrive By 14-Aug SAIC Project Manager Jamie McKinney <u>Eabels</u> Yes Custody Seals 6310 Allentown Boulevard Project Manager Jamie McKinney <u>Labels</u> Yes Custody Seals Harrisburg PA 17112- COC/RFA Forms Yes Coolers	PARAMETER BOTTLE TYPE AMOUNT LOT NUMBER PRESERVATIVE LOT NUMBER COMMENTS 1Hr Sol Gas 4 The Sol Gas 4 200mL benzene, cumene (hyberazene, (

TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST Lot Number:

	;		
Review Items	Yes No	NA If No, what was the problem?	Comments/Actions Taken
1. Do sample container labels match COC?		□ 1a Do not match COC	
(1173) Lates, 1111es)		U I D Incomplete information	
		□ 1 d Label torn	
		🗆 1e No label	
	7	1 11 COC not received	
0 Is the cooler temperature within limits (> freezing			
4. Is use cooler temperature within limits? (> if eezing temp. of water to 6 °C. VOST: 10°C)		□ 2a Temp Blank =	
	7	□ 2c Cooling initiated for recently	
		collected samples, ice present.	
 Were samples received with correct chemical presentative (avolution Bucaro) 	- · ·	□ 3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or		1 4ª Not mesent	
		Ab Not intact	
	7	1 4c Other:	
5. Were all of the samples listed on the COC received?		Samples received-not on COC	
	7	5b Samples not received-on COC	
Were all of the sample containers received intact?	~	🗆 6a Leaking	
	>	6b Broken	
Were VOA samples received without headspace?		Ta Headspace (VOA only)	
8. Were samples received in appropriate containers?	7	🗆 8a Improper container	
Did you check for residual chlorine, if necessary?		□ 9a Could not be determined due	
		to matrix interference	
	7	□ 10a Holding time expired	
		✓ □ Incomplete information	
12. For 1613B water samples is pH<9?	,	-If no, was pH adjusted to pH 7 - 9 with sulfuric acid?	
13. Are the shipping containers intact?		□ 13a Leaking	
14 Was COC relianished? (Simed/Dated/Eined)	•		
	2		
15. Are tests parameters instant for call sample: 16. Is the matrix of the complex notado	2 /		
		1150 Incomptete Information	
18. Is the client and project name/# identified?		D 15a Incomplete information	
19. Was the sampler identified on the COC?	7	19a Other	
Quote #: PM Instructions:			
Sample Receiving Associate:	Jan	Date: 6/12/12	OA026R23.doc. 022812
and hard a			

Page 211 of 214

5815 Middlebrook Pike Knoxville, TN 37921 **TAL Knoxville**

Canister Samples Chain of Custody Record

TestAmerica σ

		Ĩ	-				9	F # 20	THKORIS JOIN	812	6/06	1	1
Client Contact Information	Project Manager: Roovey	My SO	Sampled Bv.	Sampled By: Matheman	302	Const		j	0	COCe			
Company: SA/C	Phone: 717 168. 1439												1
Address: 6310 Allen and Ulud	Site Contact: Mathema	500		-				(_		ŀ	
			1	·	•	<u> </u>		noitaea					
A Name: HO DIA, 45 UST O	Analysis Turnaround Time	und Time	1					: səto				: 2910	
Site/location: York PA	Sta	×						u uj i					
Po# 18009811.0	Rush (Specify)							(yiceq					lunnd
Sample Identification	Sample Date(s) Time Start Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg Flow Controller (Stop) ID	r Canister (D	81-OT 	EPA 3C	EPA 26C	Offict (Please s	Sample Type	niA InsidmA	asD lio2	Landfill Gase s Other (Please s	
HD. B45. SGSP. 3. 01.0	8.15-13 0930 1030	38 6	6/	11153	×					/ 	×	╢──	1
HO. BHS. Revert. OI. O	0501 0500		55	0063	×					×			T
HD-BUS-SGSP-1-01-0	1011 1001	5	5	6613	7					_	×		T
HO. O45.5658. 3. O1. O	42.61 bell 1	30 11.	5 126	11407	×						×		
													1
						_,	-						
sampled by :	Interior	Temperature (Fahrenheit) Ambient	enheit)		Der 1		2	- Pre	۲ ۱ 4	94			
	Start	-					han	6	24			ł	
	Stop				1905	L C	#	2000 5		2 7	780		
		Pressure (inches of Hg)	(Hg)										Г
	Interior	Ambient											
	Start				4 CBNS	SNG	5	Pour	B				
	Stop												
Special Instructions/QC Requirements & Comments:	Analyze tor !	Denzene, ethyll	benzene, ethyl benzene, Cunene, naght hiere, tolwene,	MERE, D	tyde	2	-P J	-	P	10	4	RIAS,	
İ	. 14			2									
Canisters Shipped by:	Date/Time:	Canis	Canisters Received by:				-		Ì				T
Samples Relinquished by: Masty	Date/Time: 8-15-13 / 1330		Received by: Fed.	A Ex			1						
Relinquished by:	Date/Time:		Med by	1		22							
Lab Use Only Shinner Name:		Onana Ru										ľ	1~-

Bill Construct Project Manager Addition Sampled By: Manager Addition Construct Addition Addition </th <th>et Mans et Mans ontact</th> <th></th> <th>respect to th</th> <th>he collection a</th> <th>nd shipment ol</th> <th>TestAmerica assumes no liability with respect to the collection and shipment of these samples.</th> <th>5</th> <th></th> <th>THE LEADER IN ENVIRONMENTAL TESTING</th> <th>THE LEADER IN</th> <th>IN ENVIRONMENTAL TESTING</th> <th>SONME</th> <th></th> <th>ミニカリ</th>	et Mans et Mans ontact		respect to th	he collection a	nd shipment ol	TestAmerica assumes no liability with respect to the collection and shipment of these samples.	5		THE LEADER IN ENVIRONMENTAL TESTING	THE LEADER IN	IN ENVIRONMENTAL TESTING	SONME		ミニカリ
Alther View Billysis Landfill Gae Billysis Canitee Canitee Canitee Canit C	HAVEN Dive Site Contact APA 17113 TAL Contact Dis UST Chataed exizing an	Ladrey HI	41463	<u> </u>	ampled By:			4			JAK	8 8	2013	
Ialysis Turnaround Tine Ialysis Turnaround Tine Ialysis Turnaround Tine Iald (Specify) Iard (Specify) X Canister Canister Canister Canister Canister Canister Vacuum in Vacuum in	i	hew de	Yannin Yann							eecņou)				(dollar)
Start Time Stop Canister Canister Canister Canister Canister Canister Canister Canister Canister Canister Canister Value Value Value Value Image Value Value Value Image Value Value Value Image Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value	LO Standard Rush (Sp	sis Turnaroun (Specity)) pecity)	rd Time				······································			seity in notes				
Tail Logo 28 6 13 X D C <thc< td=""><td></td><td>Time Stop</td><td>Canister Vacuum in Field, "Hg (Start)</td><td>Caníster Vacuum (n Field, 'Hg (Stop)</td><td>iow Controller ID</td><td>Canister ID</td><td>· · · ·</td><td></td><td>EPA 25C</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td></thc<>		Time Stop	Canister Vacuum in Field, "Hg (Start)	Caníster Vacuum (n Field, 'Hg (Stop)	iow Controller ID	Canister ID	· · · ·		EPA 25C			· · · · · · · · · · · · · · · · · · ·		
Right Image Row	558-3.01.0 8-15-19 093		38	9	6/	11153	×			<u> </u>		-		
Ø1 IIO1 30 IH HJ 66/15 × × AP 1339 30 11.5 136 11400 × × Temperature (Fahrenheit) × × × × × × Temperature (Fahrenheit) × × × × × Temperature (Fahrenheit) × × × × Ider Ambient × × × Ider Ambient × × × Ider Ambient × × ×	0.10.10		କୁ ଜୁନ	~	66	5900	×					¥		+
AP 1329 30 11.5 136 11401 X Temperature (Fahrenheit) Temperature (Fahrenheit) Temperature (Fahrenheit) Temperature (Fahrenheit) Temperature (Fahrenheit) Fill Temperature (Fahrenheit) Temperature (Fahrenheit) Fill Temperature (Fahrenheit) Fill F	0.00	_	B	Ð	17	6615	×	-					У	
rior	3-01.0 V V		Ð	11.5	136	107111	×						Y	
rior														
rior														
flor Flor			Temperature	Eahrenheit)										╢─
rior	lnte		Ambient											
rior	Start													
rior	Stop													
rior		_	Pressure (ind	ches of Hg)										
Start			Amblent											1
	Start Store													
,			. [
				Canisters Re	sceived by:									
Date/Time: Canisters				Received by	5		ŀ		Τ					
Canisters	Date/Time:			Received by:					T					

Page 213 of 214

· • •

Client: Science Applications International Corp

Login Number: 13478 List Number: 1 Creator: Gamber Tom

Creator:	Gamber,	Iom

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-13478-1

List Source: TestAmerica Pittsburgh

ANALYTICAL REPORT

Job Number: 180-14490-1 Job Description: Harley Davidson

For: Science Applications International Corp 6310 Allentown Boulevard Harrisburg, PA 17112

Attention: Mr. Rodney Myers

Approved for release. Jill L Colussy Project Manager I 9/28/2012 11:20 AM

Jill L Colussy Project Manager I jill.colussy@testamericainc.com 09/28/2012

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of TestAmerica and its client. All questions regarding this report should be directed to the TestAmerica Project Manager or designee who has signed this report.

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

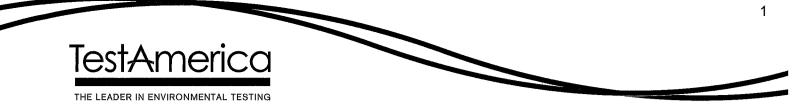
Table of Contents

Cover Title Page	1
Data Summaries	3
Report Narrative	3
Sample Summary	4
Method Summary	5
Subcontracted Data	6

SAMPLE SUMMARY

Client: Science Applications International Corp

Job Number: 180-14490-1


			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
180-14490-1	HD-B45-SGSP-1-01-0	Air	09/12/2012 1026	09/13/2012 0000
180-14490-2	HD-B45-SGSP-3-01-0	Air	09/12/2012 1042	09/13/2012 0000
180-14490-3	HD-B45-AMBIENT-01-0	Air	09/12/2012 1046	09/13/2012 0000
180-14490-4	HD-B45-SGSP-2-01-0	Air	09/12/2012 1331	09/13/2012 0000

METHOD SUMMARY

Client: Science Applications International Corp			Job Number: 180-14490-1
Description	Lab Location	Method	Preparation Method
Matrix: Air			
General Sub Contract Method	TAL KNX	Subcontract	
Lab References:			
TAL KNX = TestAmerica Knoxville			
Method References:			

Subcontract Data

H2I130401 Analytical Report	1
Sample Receipt Documentation	13
Volatiles	17
Raw Sample Data	18
Standards Data	60
Initial Calibration e081512i.pdf Continuing Calibration e091312.pdf	61 139
Raw QC Data	154
Miscellaneous Data	170
Sample Receipt Documentation	175
Total Number of Pages	178

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. 180-14490-1 Harley Davidson (PADEP)

Lot #: H2I130401

Jill Colussy

TestAmerica Pittsburgh 301 Alpha Drive Pittsburgh, PA 15238

TESTAMERICA LABORATORIES, INC.

Ryan Henry

Ryan Henry Project Manager

September 18, 2012

ANALYTICAL METHODS SUMMARY

H2I130401

PARAMETE	IR	ANALYTICAL METHOD
Volatile	e Organics by TO15	EPA-2 TO-15
Referenc	2es:	
EPA-2	"Compendium of Methods for the Dete: Organic Compounds in Ambient Air", 1 January 1999.	

SAMPLE SUMMARY

H2I130401

			SAMPLED	SAMP
<u>WO #</u>	SAMPLE	CLIENT SAMPLE ID	DATE	TIME
MWJW7 MWJW8 MWJW9 MWJXA	001 002 003 004	HD-B45-SGSP-1-01-0 HD-B45-SGSP-3-01-0 HD-B45-AMBIENT-01-0 HD-B45-SGSP-2-01-0	09/12/12 09/12/12 09/12/12 09/12/12	10:42 10:46

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PROJECT NARRATIVE H2I130401

The results reported herein are applicable to the samples submitted for analysis only. If you have any questions about this report, please call (865) 291-3000 to speak with the TestAmerica project manager listed on the cover page.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

There were no problems with the condition of the samples received.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

CERTIFICATION SUMMARY

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Knoxville	ACLASS	DoD ELAP		ADE-1434
TestAmerica Knoxville	Arkansas	State Program	6	88-0688
TestAmerica Knoxville	California	State Program	9	2423
TestAmerica Knoxville	Colorado	State Program	8	N/A
TestAmerica Knoxville	Connecticut	State Program	1	PH-0223
TestAmerica Knoxville	Florida	NELAC	4	E87177
TestAmerica Knoxville	Georgia	State Program	4	906
TestAmerica Knoxville	Hawaii	State Program	9	N/A
TestAmerica Knoxville	Indiana	State Program	5	C-TN-02
TestAmerica Knoxville	lowa	State Program	7	375
TestAmerica Knoxville	Kansas	NELAC	7	E-10349
TestAmerica Knoxville	Kentucky	State Program	4	90101
TestAmerica Knoxville	Louisiana	NELAC	6	LA110001
TestAmerica Knoxville	Louisiana	NELAC	6	83979
TestAmerica Knoxville	Maryland	State Program	3	277
TestAmerica Knoxville	Michigan	State Program	5	9933
TestAmerica Knoxville	Minnesota	NELAC	5	047-999-429
TestAmerica Knoxville	Nevada	State Program	9	TN00009
TestAmerica Knoxville	New Jersey	NELAC	2	TN001
TestAmerica Knoxville	New York	NELAC	2	10781
TestAmerica Knoxville	North Carolina	North Carolina DENR	4	64
TestAmerica Knoxville	North Carolina	North Carolina PHL	4	21705
TestAmerica Knoxville	Ohio	OVAP	5	CL0059
TestAmerica Knoxville	Oklahoma	State Program	6	9415
TestAmerica Knoxville	Pennsylvania	NELAC	3	68-00576
TestAmerica Knoxville	South Carolina	State Program	4	84001
TestAmerica Knoxville	Tennessee	State Program	4	2014
TestAmerica Knoxville	Texas	NELAC	6	T104704380-TX
TestAmerica Knoxville	USDA	USDA		P330-11-00035
TestAmerica Knoxville	Utah	NELAC	8	QUAN3
TestAmerica Knoxville	Virginia	State Program	3	165
TestAmerica Knoxville	Washington	State Program	10	C593
TestAmerica Knoxville	West Virginia	West Virginia DEP	3	345
TestAmerica Knoxville	West Virginia	West Virginia DHHR (DW)	3	9955C
TestAmerica Knoxville	Wisconsin	State Program	5	998044300

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Data Summary

Client Sample ID: HD-B45-SGSP-1-01-0

GC/MS Volatiles

Lot-Sample # H2	21130401 - 001		Work Order #	MWJW71AD	Matr	ix: AIR	
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	09/12/2012 09/13/2012 2257064 10		Date Received: Analysis Time: Analysis Time: Method	09/13/2012 09/13/2012 22:15 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
m-Xylene & p-Xylene		7.7	0.80	0.50	34	3.5	2.2
Methyl tert-butyl ether		ND	4.0	0.68	ND	14	2.5
Toluene		2.4	0.80	0.21	9.1	3.0	0.79
Naphthalene		ND	2.0	0.36	ND	10	1.9
1,2,4-Trimethylbenzene	•	0.57 J	0.80	0.25	2.8 J	3.9	1.2
1,3,5-Trimethylbenzene	9	0.28 J	0.80	0.26	1.4 J	3.9	1.3
Ethylbenzene		2.1	0.80	0.27	9.0	3.5	1.2
Cumene		0.36 J	1.6	0.24	· 1.8 J	7.9	1.2
o-Xylene		2.2	0.80	0.24	9.7	3.5	1.0
Benzene		0.75 J	0.80	0.23	2.4 J	2.6	0.73
SURROGATE			PERCENT RECOVERY		CON	ORATORY TROL TS (%)	

4-Bromofluorobenzene

RECOVERY

104

LIMITS (%) 60 - 140

Oualifiers

Estimated result. Result is less than RL. J

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v)){unrounded] * (Molecular Weight/24.45)

 $\label{eq:MDL} MDL \ (ug/m3) = MDL \ (ppb(v/v)) [unrounded] \ * \ (Molecular \ Weight/24.45)$

Client Sample ID: HD-B45-SGSP-3-01-0

GC/MS Volatiles

Lot-Sample # H2I13	30401 - 002	Work Order #	MWJW81AD	Matrix	: AIR	
Prep Date: Prep Batch #:	09/12/2012 09/13/2012 2257064 10	Date Received: Analysis Time: Analysis Time: Method	09/13/2012 09/13/2012 23:08 TO-15			
PARAMETER	RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
o-Xylene	ND	0.80	0.24	ND	3.5	1.0
Benzene	ND	0.80	0.23	ND	2.6	0.73
Cumene	ND	1.6	0.24	ND	7.9	1.2
Ethylbenzene	ND	0.80	0.27	ND	3.5	1.2
1,3,5-Trimethylbenzene	ND	0.80	0.26	ND	3.9	1.3
1,2,4-Trimethylbenzene	0.38 J	0.80	0.25	1.9 J	3.9	1.2
Naphthalene	ND	2.0	0.36	ND	10	1.9
Toluene	0.26 J	0.80	0.21	0.98 J	3.0	0.79
Methyl tert-butyl ether	ND	4.0	0.68	ND	14	2.5
m-Xylene & p-Xylene	ND	0.80	0.50	ND	3.5	2.2

SURROGATE		
N		

recovery 101

PERCENT

LABORATORY CONTROL LIMITS (%) 60 - 140

4-Bromofluorobenzene

<u>Oualifiers</u>

J Estimated result. Result is less than RL.

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: HD-B45-AMBIENT-01-0

GC/MS Volatiles

Lot-Sample # H	I2I130401 - 003		Work Order #	MWJW91AD	Matr	ix AIR	
Date Sampled: Prep Date Prep Batch #: Dilution Factor.:	09/12/2012 09/13/2012 2257064 1		Date Received: Analysis Time: Analysis Time: Method:	09/13/2012 09/13/2012 21:21 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v	MDL)) (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
m-Xylene & p-Xylene		0.19	0.080	0.050	0.84	0.35	0.22
Methyl tert-butyl ether		ND	0.40	0.068	ND	1.4	0.25
Toluene		0.45	0.080	0.021	1.7	0.30	0.079
Naphthalene		ND	0.20	0.036	ND	1.0	0.19
1,2,4-Trimethylbenzen	ie	0.064 J	0.080	0.025	0.32 J	0.39	0.12
1,3,5-Trimethylbenzene	9	ND	0.080	0.026	ND	0.39	0.13
Cumene		ND	0.16	0.024	' ND	0.79	0.12
Ethylbenzene		0.064 J	0.080	0.027	0.28 J	0.35	0.12
Benzene		0.14	0.080	0.023	0.45	0.26	0.073
o-Xylene		0.071 J	0.080	0.024	0.31 J	0.35	0.10
SURROGATE			PERCENT RECOVERY		CON	DRATORY TROL TS (%)	

4-Bromofluorobenzene

101

LIMITS (%) 60 - 140

<u>Oualifiers</u>

Estimated result. Result is less than RL. J

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

 $\label{eq:MDL} MDL \ (ug/m3) = MDL \ (ppb(v/v))[unrounded] \ * \ (Molecular \ Weight/24.45)$

Client Sample ID: HD-B45-SGSP-2-01-0

GC/MS Volatiles

Lot-Sample # H2	21130401 - 004		Work Order #	MWJXA1AD	Matr	ix: AIR	
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	09/12/2012 09/13/2012 2257064 10		Date Received: Analysis Time: Analysis Time: Method:	09/13/2012 09/14/2012 00:03 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL. (ug/m3)
o-Xylene		0.39 J	0.80	0.24	— 1.7 J	3,5	1.0
Benzene		0.75 J	0.80	0.23	2.4 J	2.6	0.73
Cumene		ND	1.6	0.24	ND	7.9	1.2
1,3,5-Trimethylbenzene		ND	0.80	0.26	ND	3.9	1.3
Ethylbenzene		0.34 J	0.80	0.27	1.5 J	3.5	1.2
Naphthalene		ND ·	2.0	0.36	ND	10	1.9
1,2,4-Trimethylbenzene		ND	0.80	0.25	ND	3.9	1.2
Methyl tert-butyl ether		ND	4.0	0.68	ND	14	2.5
Toluene		1.5	0.80	0.21	5.7	3,0	0.79
m-Xylene & p-Xylene		1.1	0.80	0.50	4.9	3.5	2.2
SURROGATE			PERCENT RECOVERY		CON	ORATORY TROL TS (%)	
4-Bromofluorobenzene			101		60 -	140	-

Oualifiers

J Estimated result. Result is less than RL.

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H21	[130000 - 064B		Work Order #	MWJ7D1AA	Matr	ix: AIR	
Prep Date: Prep Batch #: Dilution Factor.:	09/12/2012 09/13/2012 2257064 1		Date Received: Analysis Time: Analysis Time: Method:	09/13/2012 09/13/2012 13:20 TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTING LIMIT (ppb(v/v))	MDL (ppb(v/v))	RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	MDL (ug/m3)
m-Xylene & p-Xylene		ND	0.080	0.050	ND	0.35	0.22
Methyl tert-butyl ether		ND	0.40	0.068	ND	1.4	0.25
Toluene		ND	0.080	0.021	ND	0.30	0.079
1,2,4-Trimethylbenzene		ND	0.080	0.025	ND	0.39	0.12
Naphthalene		ND	0.20	0.036	ND	1.0	0.19
1,3,5-Trimethylbenzene		ND	0.080	0.026	ND	0.39	0.13
Ethylbenzene		ND	0.080	0.027	- ND	0.35	0.12
Cumene		ND	0.16	0.024	' ND	0.79	0.12
Benzene		ND	0.080	0.023	ND	0.26	0.073
o-Xylene		ND	0.080	0.024	ND	0.35	0.10
SURROGATE			PERCENT RECOVERY		CON	ORATORY TROL TS (%)	

4-Bromofluorobenzene

99

LIMITS (%) 60 - 140

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

Lot-Sample #	H2I130000 - 064C		Work Order #	MWJ7D1AC		Matrix:	AIR
	09/12/2012		Date Received:	09/13/2012			
Prep Date:	09/13/2012		Analysis Time:	09/13/2012			
Prep Batch #:	2257064		Analysis Time:	08:15			
Dilution Factor.:	1		Method:	TO-15			
PARAMETER		SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
o-Xylene		5.00	4.86	21.7	21.1	97	70 - 130
Benzene		5.00	4.65	16.0	14.8	93	70 - 130
Cumene		5,00	4.73	24.6	23.2	95	70 - 130
Ethylbenzene		5.00	4.75	21.7	20.6	95	70 - 130
,3,5-Trimethylbenzo	ene	5.00	4.78	24.6	23.5	96	70 - 130
1,2,4-Trimethylbenzo	ene	5.00	4.79	24.6	23.5	96	70 - 130
Naphthalene		5.00	4.82	26.2	25.3	96	40 - 140
Toluene		5.00	4.44	18.8	16.7	89	70 - 130
Methyl tert-butyl eth	er	5.00	5.14	18.0	18.5	103	60 - 140
m-Xylene & p-Xyler	1ê	10.0	9.62	43.4	41.8	96	70 - 130

SURROGATE

4-Bromofluorobenzene

percent recovery 108 LABORATORY CONTROL LIMITS (%) 60 - 140

.

Reporting Limit (ug/m3) = Reporting Limit (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

MDL (ug/m3) = MDL (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Result (ug/m3) = Result (ppb(v/v))[unrounded] * (Molecular Weight/24.45)

Sample Receipt Documentation

O	U N		(uo	ltoəs	səto.	u ui v	çibəc	Ofher (Please sp										627	2					1		1	4
Ō	ENVIRONMENTAL TESTING							Landfill Gas	-						0			HC.	ک								
	A1							289 lioS	X	×		$\overset{\sim}{\sim}$			EW			225	2								
\mathcal{P}	DNME 201	cocs						niA finəidmA			7			 ア		-		SLIN.	ē o	(0)	3						
	P/9	S			T.S.			Indoor Air					新語	ATA	E C	2		*	5		LUM						
	AKO913 JOUAN	of /	(uo	noəs	sətol	u ui /	1782 mil 1987	Ofher (Please sp						5	ן ז ⊲		4	4H-L	-		H FUNNUS		TOE				
- m	EAL	1						9461-0 MT2A	4 4 7 1					 CEALL FAITA	14		2	MIN	< ,	~			E S				
TestAmeni	THE L			<u>.</u>				EPA 25C		· · ·						i c	61-51 -1- 13-19	MO + FARE I AIN FLANTE GUISS S/ 24421	-	HCANC	かない		JUIT			0	
3	SO SO	5						SPA 3C						() CTUM	05/20		0-10		<u> </u>	Ţ	-		S.			05:00	r
		2						A41-OT							•			99	4-21				5				,
q	les.	2						TO-15	\succ	×	×	X		 	.			2	خ 				M			9-73-12	
<i>⊦0</i> Recor	f these samp	Matte		·				Canister ID	145G	T&HT	18652	JSK	-										۲./ ,¢		×	9-7	v
וסאטנועברו hples Chain of Custody Record	TestAmerica assumes no liability with respect to the collection and shipment of these samples.	Sampled By: Matthew JLong r						Flow Controller ID	48	(3)	Ŧ												a) Kylene	Canisters Received by:	V. Fed. Ex	100	
in of C	the collection							Canister Vacuum in Field, 'Hg (Stop)	19.5	9	1	19	•	Temperature (Fahrenheit)				Pressure (inches of Hg)		:		HOHOR	the sta	Canisters R	Received by:	Received by:	
s Chai	respect to	Myess	C S		nd Time	x		Canister Vacuum in Field, "Hg (Start)	ନ	R	R	8.S		 Temperatur	Ambient	1		Pressure (ir	Ambient			D: HSOMROOMCH	ie tol				
mples	o liability with	direy	Henry	-	s Turnaround Time	pecify)	cify)	Time Stop	1076		9401	1331										H : R	Whales		B		to many second second second
ter Sa	assumes no	nager: R	CE Hard		Analysis 1	Standard (Specify)	Rush (Specify)	Time Start	3660	CHPO	BUPU	1231			Interior				Interior			SPIC	se ver		10-11-51		
Canister San	TestAmerica	Project Manager: Ro	TAL Contact: Ryan Hanry	-				Sample Date(s)	A. 10. 13	9.61.P	9-13-13 09-46	9.6.8				Start	Stop	- -		Start	Stop	1/1/Jo	ere Cume	Date/Time:	Date (Time: 12.12 /	Date/Time:	
TAL Knoxville 5815 Middlebrook Pike	phone 865-291-3000 fax 865-584-4315	Client Contact Information	210 Allenhun Olud Zip Harrisburg PA MILZ	111 - 101- 2100 111 - 001- 2103	me: Hackey, Davidson	A Yek	HSOM ROONGH	Sample Identification	. CHE - SCSP - 1- OV. O	HD-B42-SGSP-3.01.0	B45. Ambresh. O.O.	2658-2-01-0		y:								Special Instructions/QC Requirements & Comments: 1311 ho SPAC	Analyce for: benzere, ethyl benzere, currere, maphilialere, talwere, tolore, toleres, 1,34. TMB, 1,3,5. TMB, MTBE	hipped by:	Samples Relinquished by		10655
TAL K 5815 Mide	phone 86	Client Co	Company Address: City/State/	FAX:	Project Name	Site/location:	PO# U		ED OF	9-0H	HO- G	D. OH		Sampled by :	•							Special In:	Broky	Canisters Shipped by:	Samples R	Relinquished by:	

Page 21 of 185

	+	-	\vdash		
Review Items	Yes No		NA [If No, what was the problem?	Comments/Actions Taken
1. Do sample container labels match COC?			-	□ 1a Do not match COC	
(IDs, Dates, Times)				□ 1b Incomplete information	
	\searrow			□ 1c Marking smeared	
	>			Id Label torn	
				L le No label	
				□ 11 COC not received	
2. Is the cooler temperature within limits? (> freezing				□ 2a Temp Blank =	
temp. of water to 6 °C, VOST: 10°C)			~	□ 2b Cooler Temp =	
		`	$\frac{1}{2}$	□ 2c Cooling initiated for recently	
			Ť	collected samples, ice present.	
3. Were samples received with correct chemical preservative (excluding Encore)?		<u> </u>	$\overline{}$	□ 3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or				a Not present	
containers?				□ 4b Not intact	
	$\overline{}$			\Box 4c Other:	
5. Were all of the samples listed on the COC received?			_	□ 5a Samples received-not on COC	
			_	□ 5b Samples not received-on COC	
6. Were all of the sample containers received intact?	<u> </u>			🗆 6a Leaking	
			7	□ 6b Broken	
7. Were VOA samples received without headspace?	~	\geq		□ 7a Headspace (VOA only) -	
8. Were samples received in appropriate containers?		_	-	□ 8a Improper container	
9. Did you check for residual chlorine, if necessary?		_	$\overline{\overline{}}$	□ 9a Could not be determined due	
	\mathbf{X}			to matrix interference	
10. Were samples received within holding time?	$\overline{\ }$	_	$\overline{\}$	□ 10a Holding time expired	
11. For rad samples, was sample activity info. provided?			1	□ Incomplete information	
12. For 1613B water samples is pH<9?	`		$\overline{\overline{}}$	If no, was pH adjusted to pH 7 - 9	
13. Are the shipping containers intact?				□ 13a Leaking	
				□ 13b Other:	
14. Was COC relinquished? (Signed/Dated/Timed)				□ 14a Not relinquished –	
15. Are tests/parameters listed for each sample?	1		_	□ 15a Incomplete information	
16. Is the matrix of the samples noted?	11			□ 15a Incomplete information	
17. Is the date/time of sample collection noted?	/			□ 15a Incomplete information	
18. Is the client and project name/# identified?	1			□ 15a Incomplete information	
19. Was the sampler identified on the COC?	/			🗆 19a Other	
Quote #: 70/05S PM Instructions: MA	ł				
	_				
Sample Receiving Associate:	¥		Ц	Date: 9-13-12	QA026R23.doc, 022812

Test America - Knoxville ---- Air Canister Dilution Log Lot Number: <u>H21130401</u> Γ

	Comments	10068	Martineout.		-\$
	Finàl Pres. Pf (psig)				
	Vol (mL)				
	Serial Dilution Can #				
ilutions	Third InCan Final Pres. Pf (psig)				
Subsequent Dilutions	Second In-can Final Pres. Pf (psig)				
Sub	First InCan Final Pres. Pf (psig)				
	, Final Pres. Pf (psig)				
	Initial Pres. Pi (in)				
	l / Pbarr S (in)				
	ate / I				
	Analyst/Date				
	Adj. Initial Pres. (- in or + psig)	1.07			9.0t
8	Pres. Adj. upon Initial receipt Pres. (- (-in or in or + + psig) psig) Analys	-11-4 40.7	6.4-	-5,9	6:11-
e	Can #	1456	7487	93287	2516 -[[?] 40.6
Initial Can Pressure	Sample ID	TWUMM	8МСММ	6 MC MW	MWJXA
	Pbarr (in)	A.20			-2
	Tedlar Bag Time	42	-		
	Tedlar Bag Pbarr Analyst/Date Time (in)	DDE NA 29,20			>

MS038 Revision 8